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Solutions to exercise set 2

1 In our notation we write

u(x∗) = e−10x
∗

+ e−100x
∗
, x∗ ∈ [0, 1]

Natural scalings:

1.) x∗ =
1

100
x1 (e−100x

∗ ∼ 1, when x1 ∼ 1)

2.) x∗ =
1

10
x2 (e−10x

∗ ∼ 1, when x2 ∼ 1)

3.) x∗ = 1 · x3 (u ∼ 0, when x3 ∼ 1)

Regions

1.) x1 ∈ [0, 2]⇒ x∗ ∈
[
0,

2

100

]
u(x1) = e−

1
10
x1 + e−x1 ≈ 1 + e−x1

u(x∗) ≈ 1 + e−100x
∗

2.) x2 ∈
[

2

10
, 2

]
⇒ x∗ ∈

[
2

100
,

2

10

]
u(x2) = e−x2 + e−10x2 ≈ e−x2

u(x∗) ≈ e−10x
∗

3.) x3 = x∗ ∈
[

2

10
, 1

]
u(x3) = e−10x3 + e−100x3 ≈ 0

2 In our notation the problem can be written as

m∗′(t∗) = −α, m∗(0) = M,(1)

v∗′(t∗) =
αβ

m∗(t∗)
− g(

1 + x∗(t∗)
R

)2 , v∗(0) = 0,(2)

x∗′(t∗) = v∗(t∗), x∗(0) = 0(3)

the natural scalings for x∗ and m∗ are

x∗ = Rx

m∗ = Mm
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Solutions to exercise set 2

Assuming acceleration is mainly due to the rocket engine, we neglect for the time
being the gravity term. [v∗] and [t∗] are then chosen so that the remaining terms in
(2) balances and the terms in (3) balances:

(2) [v∗′] =

[
αβ

m∗

]
 

[v∗]

[t∗]
=
αβ

M
(4)

(3) [x∗′] = [v∗] 
R

[t∗]
= [v∗](5)

Solving, we find that

[t∗] =

√
RM

αβ
and [v∗] =

√
Rαβ

M

Using

x∗ = Rx, m∗ = Mm, t∗ =

√
RM

αβ
t, v∗ =

√
Rαβ

M
v

we find the scaled equations

m′(t) = −

√
Rα

Mβ
, m(0) = 1,

v′(t) =
1

m(t)
− Mg

αβ

1

(1 + x)2
, v(0) = 0,

x′(t) = v(t), x(0) = 0

3 (a) By the maximum principle it is natural to set u∗ = Uu. Setting x∗ = Lx and
t∗ = Tt, and substituting the scaled variables into the original equation we obtain

1

T
ut +

c

L
ux =

κ

L2
uxx,

where we have divided by U . By the scaling assumption ut, ux, uxx ∼ 1, and by
the assumption κ/L2 � c/L, we conclude that the third term is dominated by the
second. By the differential equation, the first and second term must be of the same
order; it is then natural to balance their respective coefficients by setting

T =
L

c
.

Multiplying with L/c we obtain the scaled equation

ut + ux = εuxx,

where ε = κ
cL � 1.

(b) Again, by the maximum principle it is natural to set u∗ = Uu. Setting x∗ = Lx
and t∗ = Tt, and substituting the scaled variables into the original equation we yet
again obtain

1

T
ut +

c

L
ux =

κ

L2
uxx,
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where we have divided by U . By the scaling assumption ut, ux, uxx ∼ 1, and by the
assumption κ/L2 � c/L, we conclude that the second term is dominated by the
third. By the differential equation, the first and third term must be of the same
order; it is then natural to balance their respective coefficients by setting

T =
L2

κ
.

Multiplying with L2/κ we obtain the scaled equation

ut + εux = uxx,

where ε = cL
κ � 1.

4 (a) Let x(t) =
∞∑
n=0

εnxn(t), and insert this into the equation. Differentiating and

reordering gives

2ẍ0 − 1 +
∞∑
n=1

εn (2ẍn + ẋn−1) = 0.

This should hold for all 0 < ε ≤ 1 so the expression for each power of ε has to
be zero. We get a system of ODE’s

2ẍ0 − 1 = 0,

2ẍn + ẋn−1 = 0, n = 1, 2, 3, . . . .

The initial condition should hold for all 0 < ε ≤ 1, and thus xi(0) = 0, ẋi(0) = 0.
We integrate the system of ODE’s to get

x0(t) =
1

4
t2,

xn(t) = −
(
−1

2

)n+1 tn+2

(n+ 2)!
, n = 1, 2, 3, . . . .

The power series expansion of the exact solution is xsol(t) = 2
ε2

∞∑
n=2

(
−1

2

)n (εt)n

n! .

If we compute the first few terms in the power series and compare them with
x0 + εx1 + ε2x2, we see that they coincide.

(b) Let t ∈ [0, 1], then

|xsol − xa| = |
2

ε2

∞∑
n=4

(
−1

2

)n (εt)n

n!
| ≤ ε2

192
,

and xa is a uniform approximation to xsol on [0, 1]. The key step is that we
can bound tn, if not we could choose a big t and make the ”error” arbitrarily
large. If we consider the set [0,∞) instead of [0, 1] we run into problems as

sup
t∈[0,∞)

|xsol(t) − xa(t)| = ∞ for all 0 < ε ≤ 1. Here we have to use supremum

instead of maximum as the function never attains its maximum. Supremum is
in some sense ”maximum including limits” (the least upper bound).
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Solutions to exercise set 2

5 (a) From the problem’s nature we have 0 ≤ v∗ (t) ≤ V0. Then, V0 will be a scale for
v∗, and moreover ∣∣bv∗2∣∣

|av∗|
≤ bV0

a
� 1.

We find a time scale from the simplified equation mdv∗

dt∗ + av∗ = 0 with solution
v∗ (t∗) = A exp

(
− a
m t
∗), that is T = m

a . Alternatively, and this is easier, we find this
scale by balancing the first and second term in equation (5) in the problem set (set
v∗ = V v and t∗ = Tt):

m
dv∗

dt∗
∼ av∗ ⇒ m

V

T

dv

dt
∼ aV v  

v,v̇∼1
m
V

T
∼ aV ⇒ T ∼ m

a
.

Using this scaling, we obtain the equation in the desired form and ε = bV0/a� 1.

(b) Plugging in v (t) = v0 (t) + εv1 (t) + · · · into the equation, we get that

O
(
ε0
)

: v̇0 = −v0,
O
(
ε1
)

: v̇1 = −v1 + v20.

Considering the initial condition,

v0 (t) = e−t,

v1 (t) = e−t − e−2t,

or
v (t) = e−t + ε

(
e−t − e−2t

)
+O

(
ε2
)
.

This is the so-called regular perturbation. We have shown through some examples
that the approximated solution not always is reasonable when t→∞, and we need
to check the validity of the approximated solution.

From the theory we know that the exact solution has the form

vex (t) =
e−t

1− ε (1− e−t)
,

and since 0 ≤ 1 − e−t < 1 for t ≥ 0, we can write the solution as a convergent
geometric series.

vex (t) = e−t
∞∑
k=0

(
ε
(
1− e−t

))k
The initial terms in the perturbation expansion coincide with the initial terms in the
series above, and we have:

vex (t)− (v0 (t) + εv1 (t)) = e−t
∞∑
k=2

(
ε
(
1− e−t

))k ≤ e−tε2
∞∑
m=0

εm =
ε2e−t

1− ε
≤ ε2

1− ε
.

Thus, we have

lim
ε→0

(
sup
t>0
|vex (t)− (v0 (t) + εv1 (t)) |

)
= 0,

and so va(t) = v0 (t) + εv1 (t) is a uniform approximation to the exact solution on
the domain t > 0.
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