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In our notation we write
u(@*) = e 10 4 e 2t e [0,1]

Natural scalings:

1 .

1) z* = Too®! (71097 1, when z1 ~ 1)
1 *

2.) "= 0% (e7107" ~ 1, when z9 ~ 1)

3) z¥=1-z3 (u~0, whenz3 ~1)

Regions

10 100’ 10
u(ze) =e "2 +e 1022 o= 72
u(x*) ~ e—lOm*

2
3. =z* —,1
) z3== 6[10, }

In our notation the problem can be written as

(1) m* () = —a, m*(0) = M,
N af B o _
(3) 2 () = o' (), 2*(0) =0

the natural scalings for * and m* are

¥ = Rx

m* = Mm
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Solutions to exercise set 2

Assuming acceleration is mainly due to the rocket engine, we neglect for the time
being the gravity term. [v*] and [t*] are then chosen so that the remaining terms in
(2) balances and the terms in (3) balances:

(@ @~11= 2|~ -2
) R

Solving, we find that

_ B [U*]_,/@
~\ ap N M
2" =Rx, m"=Mm, t* —,/ Ra

we find the scaled equations

Using

m'(t) = — MB’

1 Mg 1
m(t)  af (1+2)
() =v(t), z(0)=0

V'(t) =

(a) By the maximum principle it is natural to set u* = Uu. Setting z* = Lz and
= T't, and substituting the scaled variables into the original equation we obtain

1 c K
SUp T+ — Uy = ﬁumca

T L
where we have divided by U. By the scaling assumption wug, tug, Uz ~ 1, and by
the assumption x/L? < ¢/L, we conclude that the third term is dominated by the
second. By the differential equation, the first and second term must be of the same
order; it is then natural to balance their respective coefficients by setting

T="=.
C

Multiplying with L/c we obtain the scaled equation
Ut + Uy = EUgy,

where ¢ = 77 < 1.

(b) Again, by the maximum principle it is natural to set u* = Uu. Setting «* = Lz
and t* = T't, and substituting the scaled variables into the original equation we yet
again obtain

1

C K
Tut + Zux - ﬁumca
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Solutions to exercise set 2

where we have divided by U. By the scaling assumption ug, tug, Uz ~ 1, and by the
assumption x/L% > ¢/L, we conclude that the second term is dominated by the
third. By the differential equation, the first and third term must be of the same
order; it is then natural to balance their respective coefficients by setting

L2

T

Multiplying with L?/x we obtain the scaled equation
Ut + €Uy = Ugy,

where ¢ = % < 1.

o0
(a) Let z(t) = > €"x,(t), and insert this into the equation. Differentiating and
n=0

reordering gives

o
20— 1+ Y € (2n + dn_1) = 0.
n=1

This should hold for all 0 < € < 1 so the expression for each power of € has to
be zero. We get a system of ODE’s

2ig—1=0,
Qin +dn1=0 n=123....

The initial condition should hold for all 0 < ¢ < 1, and thus x;(0) = 0, £;(0) = 0.
We integrate the system of ODE’s to get

1
zo(t) = th,
1 n+1 2
t=—(—-= L —1,2,3,....
7n(f) ( 2> m+2)l” "
S n t n
The power series expansion of the exact solution is x4y (t) = 6% > (-1 (enz .

n=2
If we compute the first few terms in the power series and compare them with

xo + €x1 + €29, we see that they coincide.
(b) Let t € [0,1], then

n 2

2 — 1\" (et) €
e o =153 (~3) 1 < 15

and z, is a uniform approximation to xs, on [0,1]. The key step is that we
can bound t", if not we could choose a big ¢t and make the ”error” arbitrarily
large. If we consider the set [0,00) instead of [0,1] we run into problems as

Sup |zse(t) — x4(t)| = oo for all 0 < e < 1. Here we have to use supremum
te[0,00)
instead of maximum as the function never attains its maximum. Supremum is

in some sense "maximum including limits” (the least upper bound).
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Solutions to exercise set 2

(a) From the problem’s nature we have 0 < v* (¢) < V. Then, Vj will be a scale for
v*, and moreover

We find a time scale from the simplified equation m‘f;;: + av* = 0 with solution

v* (t*) = Aexp (—% *), that is 7= . Alternatively, and this is easier, we find this
scale by balancing the first and second term in equation (5) in the problem set (set

*=Vwv and t* = Tt):

dv* N Vdv v m
mdt*wav = mTENaVv U’Zzl m?NaV = Tw;.

Using this scaling, we obtain the equation in the desired form and ¢ = bVj/a < 1.
(b) Plugging in v (t) = vg (t) + ev1 (t) + - - - into the equation, we get that

<
fliry
—~
~
~—
I
@
L
[
CD\
[\
&

or
v(t)=el+e(e —e ) +0(?).
This is the so-called regular perturbation. We have shown through some examples

that the approximated solution not always is reasonable when ¢ — oo, and we need
to check the validity of the approximated solution.

From the theory we know that the exact solution has the form
—t
e
Vex () = ———————
ex (1) 1—e(l—e?)
and since 0 < 1 —e % < 1 for t > 0, we can write the solution as a convergent

geometric series.
— k:
Vex ( ¢ E 1 —e”

The initial terms in the perturbation expansion coincide with the initial terms in the
series above, and we have:

e —t 2

Vex (t) — (vo () + vy (¢ _tz (1—et <et6225 < <

Thus, we have

lim <sup vex (8) — (v (£) + 201 (1) |) _o,

and so vg(t) = vo (t) + ev; (t) is a uniform approximation to the exact solution on
the domain ¢ > 0.
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