

1 The 2D pendulum

A pendulum of mass m and length L and point of fixation O is set in motion. The position \vec{x} of the pendulum is constrained to be on the circle

$$S = \{ \vec{x} : \quad |\vec{x}| = L \}$$

Let $\vec{T}(\vec{x})$ be the unit tangent of S at \vec{x} in the counterclockwise sense, and $\vec{N}(\vec{x}) = \frac{\vec{x}}{|\vec{x}|} = \frac{\vec{x}}{L}$ be the outward pointing unit normal of S at \vec{x} . Since $|\vec{x}|^2 = L^2$, $0 = \frac{d}{dt}|\vec{x}|^2 = 2\vec{x} \cdot \dot{\vec{x}} = 2L\vec{N} \cdot \dot{\vec{x}}$ and hence $\vec{N} \cdot \dot{\vec{x}} = 0$ and $\vec{T} = \pm \frac{\dot{\vec{x}}}{|\vec{x}|}$.

The forces acting on the pendulum are the following:

- 1. Gravity: $\vec{F}_g = -mg\vec{e}_2$
- 2. Air resistance: $\vec{F}_r = -k\dot{\vec{x}}$
- 3. String tension: $\vec{F}_t = c(\vec{x})\vec{N}(\vec{x})$

where \vec{e}_2 is an unit vector. Note that \vec{N} is the tangent of the string, and that

$$\vec{F_r}\cdot\vec{N}=-k\vec{N}\cdot\dot{\vec{x}}=0$$

a) Use Newton's 2. law in \vec{N} and \vec{T} directions to find the equation of motion

(1)
$$mL\ddot{\theta} = -mg\sin\theta - kL\dot{\theta}$$

where $\theta = \phi - \frac{3\pi}{2}$ and ϕ is the polar angle. $\theta = 0 \Rightarrow \vec{x} = -L\vec{e_2}$. *Hint:* In polar coordinates

$$\vec{x}(t) = L \begin{pmatrix} \cos \phi(t) \\ \sin \phi(t) \end{pmatrix},$$
$$\vec{T}(\vec{x}(t)) = \begin{pmatrix} -\sin \phi(t) \\ \cos \phi(t) \end{pmatrix}$$

The pendulum is set in motion from an initial angle $\theta(0) = \alpha$, the initial velocity is 0.

b) Scale the initial value problem for (1) when friction is small compared to gravity, and $|\theta(0)| = |\alpha| \ll 1$. (Hint: Recall that $\sin(x) \approx x$, for small x.)

Let k = 0 and $\alpha = \epsilon$ be small, then a good scaling of the initial value problem for (1) is

(2)
$$\ddot{\theta} = -\frac{1}{\epsilon}\sin(\epsilon\theta), \quad \theta(0) = 1, \ \dot{\theta}(0) = 0.$$

Assume

$$\theta = \theta_0 + \epsilon \theta_1 + \epsilon^2 \theta_2 + \dots$$

c) Write down the initial value problems for θ_0 , θ_1 , and θ_2 . Solve for θ_0 , θ_1 , and verify that

$$6\theta_2 = \frac{1}{32} \left(\cos t - \cos 3t \right) + \frac{3}{8} t \sin t.$$

Hint: $\cos^3 t = \frac{1}{4}(3\cos t + \cos 3t).$

The perturbation solution for (2) is

$$\theta = \cos t - \epsilon^2 \frac{1}{6} \left(\frac{\cos 3t - \cos t}{32} - \frac{3}{8}t \sin t \right) + \dots$$

In this problem, the exact solution θ is bounded, but the perturbation solution contains an unbounded term

$$\epsilon^2 \frac{1}{6} \cdot \frac{3}{8} \cdot t \sin t$$

Such terms are called <u>secular</u> terms and will destroy the approximation when t is big. The approximation is only valid for t such that $\epsilon^2 \frac{3}{48} t \sin t \sim \epsilon^2 \frac{t}{10} \ll 1$.

To avoid secular terms in the perturbation expansion, one can use the Poincare-Lindstedt method: Assume

$$\theta(t) = \theta_0(\omega t) + \epsilon \theta_1(\omega t) + \epsilon^2 \theta_2(\omega t) + \dots$$

and

$$\omega = 1 + \epsilon \omega_1 + \epsilon^2 \omega_2 + \dots,$$

and choose $\omega_1, \omega_2, \ldots$ in order to cancel the secular terms.

d) Find equations for $\theta_0, \theta_1, \ldots$ and show that

$$\theta_0(t) = \cos t.$$

Determine θ_1 and θ_2 by choosing $\omega_1, \omega_2, \ldots$ to avoid unbounded terms.

2 Consider the problem

 $\ddot{x} + 2\varepsilon \dot{x} + \varepsilon x = 0,$ x(0) = 0, $\dot{x}(0) = 1 - \varepsilon.$

Determine x_0 and x_1 in the regular perturbation expansion

$$x(t) = x_0(t) + \varepsilon x_1(t) + \varepsilon^2 x_2(t) + \cdots$$

3 (Problem 2, p. 23 in A. W. Bush: *Perturbation Methods for Engineers and Scientists*)

Obtain a two-term perturbation expansion for the solution of

$$\dot{y} - y - \varepsilon y^2 e^{-t} = 0, \qquad y(0) = 1.$$

4 (Exercise 5 p. 299 in Lin & Segel)

Use singular perturbation theory to obtain outer, inner, and composite expansions to the solution of the problem

$$\epsilon u'' - (2 - x^2)u = -1, \qquad u(-1) = u(1) = 0.$$

REMARK. It is sufficient to solve the differential equation on (0, 1) subject to the boundary conditions u'(0) = 0, u(1) = 0. Why?