1 The 2D pendulum

A pendulum of mass m and length L and point of fixation O is set in motion. The position \vec{x} of the pendulum is constrained to be on the circle

$$
S=\{\vec{x}: \quad|\vec{x}|=L\}
$$

Let $\vec{T}(\vec{x})$ be the unit tangent of S at \vec{x} in the counterclockwise sense, and $\vec{N}(\vec{x})=$ $\frac{\vec{x}}{|\vec{x}|}=\frac{\vec{x}}{L}$ be the outward pointing unit normal of S at \vec{x}. Since $|\vec{x}|^{2}=L^{2}, 0=\frac{\mathrm{d}}{\mathrm{d} t}|\vec{x}|^{2}=$ $2 \vec{x} \cdot \dot{\vec{x}}=2 L \vec{N} \cdot \dot{\vec{x}}$ and hence $\vec{N} \cdot \dot{\vec{x}}=0$ and $\vec{T}= \pm \frac{\dot{\vec{x}}}{|\overrightarrow{\vec{x}}|}$.
The forces acting on the pendulum are the following:

1. Gravity: $\vec{F}_{g}=-m g \vec{e}_{2}$
2. Air resistance: $\vec{F}_{r}=-k \dot{\vec{x}}$
3. String tension: $\vec{F}_{t}=c(\vec{x}) \vec{N}(\vec{x})$
where \vec{e}_{2} is an unit vector. Note that \vec{N} is the tangent of the string, and that

$$
\vec{F}_{r} \cdot \vec{N}=-k \vec{N} \cdot \dot{\vec{x}}=0
$$

a) Use Newton's 2. law in \vec{N} and \vec{T} directions to find the equation of motion

$$
\begin{equation*}
m L \ddot{\theta}=-m g \sin \theta-k L \dot{\theta} \tag{1}
\end{equation*}
$$

where $\theta=\phi-\frac{3 \pi}{2}$ and ϕ is the polar angle. $\theta=0 \Rightarrow \vec{x}=-L \vec{e}_{2}$.
Hint: In polar coordinates

$$
\begin{aligned}
\vec{x}(t) & =L\binom{\cos \phi(t)}{\sin \phi(t)}, \\
\vec{T}(\vec{x}(t)) & =\binom{-\sin \phi(t)}{\cos \phi(t)}
\end{aligned}
$$

The pendulum is set in motion from an initial angle $\theta(0)=\alpha$, the initial velocity is 0 .
b) Scale the initial value problem for (1) when friction is small compared to gravity, and $|\theta(0)|=|\alpha| \ll 1$.
(Hint: Recall that $\sin (x) \approx x$, for small x.)
Let $k=0$ and $\alpha=\epsilon$ be small, then a good scaling of the initial value problem for (1) is

$$
\begin{equation*}
\ddot{\theta}=-\frac{1}{\epsilon} \sin (\epsilon \theta), \quad \theta(0)=1, \quad \dot{\theta}(0)=0 \tag{2}
\end{equation*}
$$

Assume

$$
\theta=\theta_{0}+\epsilon \theta_{1}+\epsilon^{2} \theta_{2}+\ldots
$$

c) Write down the initial value problems for θ_{0}, θ_{1}, and θ_{2}. Solve for θ_{0}, θ_{1}, and verify that

$$
6 \theta_{2}=\frac{1}{32}(\cos t-\cos 3 t)+\frac{3}{8} t \sin t
$$

Hint: $\cos ^{3} t=\frac{1}{4}(3 \cos t+\cos 3 t)$.
The perturbation solution for (2) is

$$
\theta=\cos t-\epsilon^{2} \frac{1}{6}\left(\frac{\cos 3 t-\cos t}{32}-\frac{3}{8} t \sin t\right)+\ldots
$$

In this problem, the exact solution θ is bounded, but the perturbation solution contains an unbounded term

$$
\epsilon^{2} \frac{1}{6} \cdot \frac{3}{8} \cdot t \sin t
$$

Such terms are called secular terms and will destroy the approximation when t is big. The approximation is only valid for t such that $\epsilon^{2} \frac{3}{48} t \sin t \sim \epsilon^{2} \frac{t}{10} \ll 1$.
To avoid secular terms in the perturbation expansion, one can use the PoincareLindstedt method: Assume

$$
\theta(t)=\theta_{0}(\omega t)+\epsilon \theta_{1}(\omega t)+\epsilon^{2} \theta_{2}(\omega t)+\ldots
$$

and

$$
\omega=1+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\ldots
$$

and choose $\omega_{1}, \omega_{2}, \ldots$ in order to cancel the secular terms.
d) Find equations for $\theta_{0}, \theta_{1}, \ldots$ and show that

$$
\theta_{0}(t)=\cos t
$$

Determine θ_{1} and θ_{2} by choosing $\omega_{1}, \omega_{2}, \ldots$ to avoid unbounded terms.

2 Consider the problem

$$
\ddot{x}+2 \varepsilon \dot{x}+\varepsilon x=0, \quad x(0)=0, \quad \dot{x}(0)=1-\varepsilon .
$$

Determine x_{0} and x_{1} in the regular perturbation expansion

$$
x(t)=x_{0}(t)+\varepsilon x_{1}(t)+\varepsilon^{2} x_{2}(t)+\cdots
$$

3 (Problem 2, p. 23 in A. W. Bush: Perturbation Methods for Engineers and Scientists)
Obtain a two-term perturbation expansion for the solution of

$$
\dot{y}-y-\varepsilon y^{2} \mathrm{e}^{-t}=0, \quad y(0)=1
$$

4 (Exercise 5 p. 299 in Lin \& Segel)
Use singular perturbation theory to obtain outer, inner, and composite expansions to the solution of the problem

$$
\epsilon u^{\prime \prime}-\left(2-x^{2}\right) u=-1, \quad u(-1)=u(1)=0
$$

REMARK. It is sufficient to solve the differential equation on $(0,1)$ subject to the boundary conditions $u^{\prime}(0)=0, u(1)=0$. Why?

