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a) Note that there is no motion in the normal direction, and hence the normal
forces are at equilibrium:

& F o s o m o = o
O—m@~N—Fg-N—|—Fr-N+Ff/-N
Since F} is a normal force, it is determined by this equation: Fy = —(ﬁg ‘N )]\7 ,

(F; N = 0) we will not need this equation here. For the tangential components,
Newton’s 2nd law yields

—

T —F, T4 B T+F-T

1

d2z
(1) m

Note that

—

Fg-f: —mgé'2~f: —mg cos ¢ = —mgsin 6
ﬁtf=0

In polar coordinates we find that

o - (25
Z-T=0+L-1-¢(t)
F,-T = —kL¢(t)

Since 6 = ¢ — 2T we find that (1) is equivalent to
mLl = —mgsin@ — kL0

which is what we should show.

b) Since max || = «, we choose

The time scale

t =Tt,

September 11, 2017 Page 1 of 6




Solutions to exercise set 3

is determined from balancing acceleration and gravity terms (friction is small)
in the scaled equation:

a d%0 . _ a df
(2) mLﬁ@ = —mgsin(afd) — k:LTE,

ie.

o d%0 &\ sin af~af~a « L
mls @ mg sin(ad) =>§_N1 mLig ~mga 7

We set § = afl and t = \/gt_ and equation (2) becomes

d20 1 - k |[Ldf
(3) B a sin(af) — —

o m\ ¢ dt
For the initial conditions we have
af(0)=a=0(0)=1 and 0(0)=0.

We are given
.. 1 .
(4) 0 = ——sin(ed), 60(0) =1, 6(0) =0.
€
Insert 6 = 0y + €6 + €20 + - - - into (4) and expand:

.. .. .. 1
0y + €61 + 6292 = —— Sin(e(e() + €01 +--- ))
€
1 1
== <€(90+691+...)_663(90+691+...)3+...>
1 1
= —0y — €0y — €2(0y — 693) — (05 — 56193) o
90(0) + 691(0) +...=1
00(0) + €61 (0) +--- =0

Equate terms of equal order in € :

O(1): fy=—bp; 60(0) =1, 6p(0) =

1
Oe): 6, =—61; 61(0)=0, 91(0) =

1 .
O(?): Oy =—0y+ 693; 02(0) =0, 62(0) =0

1 .
O(3): b3 =—0;+ 59103; 03(0) =0, 65(0) =0
The solutions are
0y = cost, 81 =0

For 65 we find that

: 1
et g, + 57 (3cost + cos 31)

. 1
0y = —09 + 5 cos® t

We differentiate the solution given in the text twice

. 1 1
0y = ~193 (cost —9cos3t) + E(Qcost — tsint)

and check that it satisfies the previous equation with 5(0) = 0 = 65(0).
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d) Inserting into (4) we find

w2(00+€01+)::_ESIH(G(90+€91+))

or

(14 ewy + wy + )2 (g + €6y + €205+ - - )
1
:—(90—|—691+6292+---)+662(90+691+...)3+...

or
0o + €(2wibo + 01) + €((2w2 + wi)o + 2w161 + b2) = —0 — €y — € <02 - 698) —

The initial conditions are as before. We find

O1): Og=—0p; 6(0)=1, 6(0)=0
O(E) : 2&)1@0 + él = —0; 91(0) =0, 91(0) =0
1

698; 62(0) =0, 62(0) =0

0(62) : (2wa + w%)éo + 2w 01 + Oy = —6, +
By taking w; = 0, we find as before that
0o(t) =cost, and 6; =0.
Note that if wy # 0, then
(5) 0 + 61 = 2wy cost.

Since the right hand side solves the homogeneous equation, 6+6 =0, any
particular solution of (5) contains a non-zero term like

Atcost + Btsint.

That is an unwanted unbounded/secular term. Let us continue to determine
0o:

ég + 6y = %98 — (2&)2 + w%)éo — 2w1é1

1 3
= gcos t + 2wo cost

11
= ——(3cost + cos3t) + 2wy cost

64
(6) L cos3t 4+ (2 4 2up) cost
= — cos — + 2w9) cos
24 24 7
Here again cost solves the homogeneous equation, and unbounded/secular
terms can only be avoided if wy = —% . % = —%6. In this case the partic-

ular solution has the form

95 = (' cos 3t + Cysin 3t,
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which solves (6) when C; = — 155 and Cp = 0. This general solution of (6) is
then

1
0y = Acost + Bsint — @005315

and initial conditions, 62(0) = 0 = f(0) implies that

02 cost — cos 3t)

= 192

Hence we have found the following two approximations

6(t) = 0o(t) + O(e)
= cos(t) + O(e)

N e N DR e e

Note that there are no unbounded/secular terms anymore. These approxima-
tions can be expected to be good for all ¢ > 0.

Inserting x = x¢ + exy + 2w + --- into the equation and collecting terms of the
same order of &, we get

o+ e (&1 + 2&0 + x0) 4 €% (Fo + 281 + 1) + ... = 0.
We hence get the following equations for xy and z1:
io(t) =0,
Z1(t) = —220(t) — zo(t).
For the initial conditions, it is natural to set

xo(O) =

0,
z1(0) =0,

Solving first for xg, we get xo(t) = ¢, which inserted into the second equation leads

to
B1(t) = =2 — t,

from which we get z;(t) = — (:t> + t* 4+ 1). Hence,

z(t)=t—¢ <€15t3 + 12+ 1) + O(e?).

We assume y = yg + €y1 + - - -, which we insert into the equation, before collecting
the terms of the same order of €, to get

(o —yo) +e (J1 —y1 — yge ") + O(e?) = 0.
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We hence get the following equations for yo and y;:

Yo(t) — yo(t)
o1(t) —ya(t)

(=) Vg

0
ya(t)e .
For the initial conditions, it is here natural to set yo(0) = 1 and y;(0) = 0.

Solving first for g, we get yo(t) = €', which inserted into the second equation leads
to

3)1 (t) — U (t) = et.
Multiplying both sides of the equation with e~, we get

d

7 (e7fyi(t)) = 1.

so that
ety (t) =t+C.

From the initial condition we find C' = 0, and thus
y1(t) = te'.

Collected, we get
y(t) = e’ + ete’ + O(?).

First we note that by the symmetry in the problem, u has to be an even function. To
see this let v(z) = u(—x) and observe that both v and u satisfies the equation. As
u is even we have that «/(—z) = —u/(x). Continuity of «’ at 0 gives that v/(0) = 0
is the correct boundary condition.
By looking at the equation and boundary conditions we observe that for = ~ 1,
eu” ~ —1. Hence |u”| > 1 there, and if u ~ § for z close to 0, u” must be of order 1

close to x = 0. This means that we should use a boundary layer around = = 1. First
we find the outer solution up. We neglect the term eu” in the equation and obtain

1
(2 —2®)up =1, or up(z) = Sl
We see that ug,(0) = 0. Now we turn to the inner solution. Rescale = 1 — ¢ and
U(€) = u(x). This implies 52U"(§) = u” (), which gives the equation

€

52

U'—(2-(1-6)*)U=-1
SU - (1+006)U =—1.

52
We balance the terms by choosing § = ¢2. The linear ODE has general solution
U = c1e® + cae~¢ 4+ 1. To determine ¢; and ¢y we need two boundary conditions.
Observe first that & = 0 corresponds to # = 1. Thus U(0) = u(1) = 0, and the first
equation is
c1+c+1=0.
We want the inner solution U and the outer solution u to match in a nice manner.

That is, the transition from outside to inside the boundary layer should be continuous
when € | 0. But as € | 0 the boundary layer shrinks as well. Let ©(¢) be a path
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Figure 1: The path © in the plane.
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in the plane such that ©(¢) — 0 as € | 0. The idea is to choose O such that for

each € > 0 the function value O(e) lies in the intermediate region, at least for small

€. This happens if lii%l ?((:)) = 00. See Figure 4. To sum up we have the following
€.

conditions on the function ©

. _ . O(¢)
lelf(r)l ©(e) =0, 161%1 500

The nice behaviour across the boundary layer can be formulated

),

for any parameter 1 > 0. In our case the left hand side will be equal to one. Thus

lgﬁ}uo (1-n0(e) = lelﬁ)lU (

, 70 _ne
limcieve +ce ve =1—-1=0.
€l0

This gives ¢; = 0 (or the exponential would go to infinity due to the limit of %) and

we get cg = —1. The uniform approximation is then given by
1 _1l-z . 1 _l-z
uu(x):m—kl—e ﬁ—lelﬁ)luo(l—n@):m—e Ve
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