Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4195
 Mathematical Modelling
 Autumn 2017

Solutions to exercise set 3

1 a) Note that there is no motion in the normal direction, and hence the normal forces are at equilibrium:

$$
0=m \frac{\mathrm{~d}^{2} \vec{x}}{\mathrm{~d} t^{2}} \cdot \vec{N}=\vec{F}_{g} \cdot \vec{N}+\vec{F}_{r} \cdot \vec{N}+\vec{F}_{t} \cdot \vec{N}
$$

Since \vec{F}_{t} is a normal force, it is determined by this equation: $\vec{F}_{t}=-\left(\vec{F}_{g} \cdot \vec{N}\right) \vec{N}$, $\left(\vec{F}_{r} \cdot \vec{N}=0\right)$ we will not need this equation here. For the tangential components, Newton's 2nd law yields

$$
\begin{equation*}
m \frac{\mathrm{~d}^{2} \vec{x}}{\mathrm{~d} t^{2}} \cdot \vec{T}=\vec{F}_{g} \cdot \vec{T}+\vec{F}_{r} \cdot \vec{T}+\vec{F}_{t} \cdot \vec{T} \tag{1}
\end{equation*}
$$

Note that

$$
\begin{aligned}
& \vec{F}_{g} \cdot \vec{T}=-m g \vec{e}_{2} \cdot \vec{T}=-m g \cos \phi=-m g \sin \theta \\
& \vec{F}_{t} \cdot \vec{T}=0
\end{aligned}
$$

In polar coordinates we find that

$$
\begin{aligned}
\vec{x}(t) & =L\binom{\cos \phi(t)}{\sin \phi(t)} \\
\dot{\vec{x}}(t) & =L\binom{-\sin \phi(t)}{\cos \phi(t)} \dot{\phi}(t) \\
\ddot{\vec{x}}(t) & =L\binom{-\cos \phi(t)}{-\sin \phi(t)} \dot{\phi}(t)^{2}+L\binom{-\sin \phi(t)}{\cos \phi(t)} \ddot{\phi}(t) \\
\vec{T}(\vec{x}(t)) & =\binom{-\sin \phi(t)}{\cos \phi(t)} \\
\ddot{\vec{x}} \cdot \vec{T} & =0+L \cdot 1 \cdot \ddot{\phi}(t) \\
\vec{F}_{r} \cdot \vec{T} & =-k L \dot{\phi}(t)
\end{aligned}
$$

Since $\theta=\phi-\frac{3 \pi}{2}$ we find that (1) is equivalent to

$$
m L \ddot{\theta}=-m g \sin \theta-k L \dot{\theta}
$$

which is what we should show.
b) Since $\max |\theta|=\alpha$, we choose

$$
\theta=\alpha \bar{\theta} .
$$

The time scale

$$
t=T \bar{t},
$$

is determined from balancing acceleration and gravity terms (friction is small) in the scaled equation:

$$
\begin{equation*}
m L \frac{\alpha}{T^{2}} \frac{\mathrm{~d}^{2} \bar{\theta}}{\mathrm{~d} \bar{t}^{2}}=-m g \sin (\alpha \bar{\theta})-k L \frac{\alpha}{T} \frac{\mathrm{~d} \bar{\theta}}{\mathrm{~d} \bar{t}}, \tag{2}
\end{equation*}
$$

i.e.

$$
m L \frac{\alpha}{T^{2}} \frac{\mathrm{~d}^{2} \bar{\theta}}{\mathrm{~d} \bar{t}^{2}} \sim-m g \sin (\alpha \bar{\theta}) \underset{\bar{\theta} \sim 1}{\sin \alpha \bar{\theta} \approx \alpha \bar{\theta} \sim \alpha} \underset{=}{\underset{\bar{\theta} \sim 1}{\sim}} m L \frac{\alpha}{T^{2}} \sim m g \alpha \Rightarrow T \sim \sqrt{\frac{L}{g}} .
$$

We set $\theta=\alpha \bar{\theta}$ and $t=\sqrt{\frac{L}{g}} \bar{t}$ and equation (2) becomes

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \bar{\theta}}{\mathrm{~d} \bar{t}^{2}}=-\frac{1}{\alpha} \sin (\alpha \bar{\theta})-\frac{k}{m} \sqrt{\frac{L}{g}} \frac{\mathrm{~d} \bar{\theta}}{\mathrm{~d} \bar{t}} \tag{3}
\end{equation*}
$$

For the initial conditions we have

$$
\alpha \bar{\theta}(0)=\alpha \Rightarrow \bar{\theta}(0)=1 \quad \text { and } \quad \dot{\bar{\theta}}(0)=0 .
$$

c) We are given

$$
\begin{equation*}
\ddot{\theta}=-\frac{1}{\epsilon} \sin (\epsilon \theta), \quad \theta(0)=1, \dot{\theta}(0)=0 \tag{4}
\end{equation*}
$$

Insert $\theta=\theta_{0}+\epsilon \theta_{1}+\epsilon^{2} \theta_{2}+\cdots$ into (4) and expand:

$$
\begin{aligned}
& \ddot{\theta}_{0}+\epsilon \ddot{\theta}_{1}+\epsilon^{2} \ddot{\theta}_{2}=-\frac{1}{\epsilon} \sin \left(\epsilon\left(\theta_{0}+\epsilon \theta_{1}+\cdots\right)\right) \\
& =-\frac{1}{\epsilon}\left(\epsilon\left(\theta_{0}+\epsilon \theta_{1}+\cdots\right)-\frac{1}{6} \epsilon^{3}\left(\theta_{0}+\epsilon \theta_{1}+\cdots\right)^{3}+\cdots\right) \\
& =-\theta_{0}-\epsilon \theta_{1}-\epsilon^{2}\left(\theta_{2}-\frac{1}{6} \theta_{0}^{3}\right)-\epsilon^{3}\left(\theta_{3}-\frac{1}{2} \theta_{1} \theta_{0}^{2}\right)+\cdots \\
& \theta_{0}(0)+\epsilon \theta_{1}(0)+\cdots=1 \\
& \dot{\theta}_{0}(0)+\epsilon \dot{\theta}_{1}(0)+\cdots=0
\end{aligned}
$$

Equate terms of equal order in ϵ :

$$
\begin{aligned}
\mathcal{O}(1): & \ddot{\theta}_{0}=-\theta_{0} ; \quad \theta_{0}(0)=1, \quad \dot{\theta}_{0}(0)=0 \\
\mathcal{O}(\epsilon): & \ddot{\theta}_{1}=-\theta_{1} ; \quad \theta_{1}(0)=0, \quad \dot{\theta}_{1}(0)=0 \\
\mathcal{O}\left(\epsilon^{2}\right): & \ddot{\theta}_{2}=-\theta_{2}+\frac{1}{6} \theta_{0}^{3} ; \quad \theta_{2}(0)=0, \quad \dot{\theta}_{2}(0)=0 \\
\mathcal{O}\left(\epsilon^{3}\right): & \ddot{\theta}_{3}=-\theta_{3}+\frac{1}{2} \theta_{1} \theta_{0}^{2} ; \quad \theta_{3}(0)=0, \quad \dot{\theta}_{3}(0)=0
\end{aligned}
$$

The solutions are

$$
\theta_{0}=\cos t, \theta_{1}=0
$$

For θ_{2} we find that

$$
\ddot{\theta}_{2}=-\theta_{2}+\frac{1}{6} \cos ^{3} t \stackrel{\text { Hint }}{=}-\theta_{2}+\frac{1}{24}(3 \cos t+\cos 3 t)
$$

We differentiate the solution given in the text twice

$$
\ddot{\theta}_{2}=-\frac{1}{192}(\cos t-9 \cos 3 t)+\frac{1}{16}(2 \cos t-t \sin t)
$$

and check that it satisfies the previous equation with $\theta_{2}(0)=0=\dot{\theta}_{2}(0)$.
d) Inserting into (4) we find

$$
\omega^{2}\left(\ddot{\theta}_{0}+\epsilon \ddot{\theta}_{1}+\cdots\right)=\cdots=-\frac{1}{\epsilon} \sin \left(\epsilon\left(\theta_{0}+\epsilon \theta_{1}+\cdots\right)\right)
$$

or

$$
\begin{aligned}
&\left(1+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\cdots\right)^{2}\left(\ddot{\theta}_{0}+\epsilon \ddot{\theta}_{1}+\epsilon^{2} \ddot{\theta}_{2}+\cdots\right) \\
&=-\left(\theta_{0}+\epsilon \theta_{1}+\epsilon^{2} \theta_{2}+\cdots\right)+\frac{1}{6} \epsilon^{2}\left(\theta_{0}+\epsilon \theta_{1}+\cdots\right)^{3}+\cdots
\end{aligned}
$$

or

$$
\ddot{\theta}_{0}+\epsilon\left(2 \omega_{1} \ddot{\theta}_{0}+\ddot{\theta}_{1}\right)+\epsilon^{2}\left(\left(2 \omega_{2}+\omega_{1}^{2}\right) \ddot{\theta}_{0}+2 \omega_{1} \ddot{\theta}_{1}+\ddot{\theta}_{2}\right)=-\theta_{0}-\epsilon \theta_{1}-\epsilon^{2}\left(\theta_{2}-\frac{1}{6} \theta_{0}^{3}\right)-\cdots
$$

The initial conditions are as before. We find

$$
\begin{aligned}
\mathcal{O}(1): & \ddot{\theta}_{0}=-\theta_{0} ; \quad \theta_{0}(0)=1, \quad \dot{\theta}_{0}(0)=0 \\
\mathcal{O}(\epsilon): & 2 \omega_{1} \ddot{\theta}_{0}+\ddot{\theta}_{1}=-\theta_{1} ; \quad \theta_{1}(0)=0, \quad \dot{\theta}_{1}(0)=0 \\
\mathcal{O}\left(\epsilon^{2}\right): & \left(2 \omega_{2}+\omega_{1}^{2}\right) \ddot{\theta}_{0}+2 \omega_{1} \ddot{\theta}_{1}+\ddot{\theta}_{2}=-\theta_{2}+\frac{1}{6} \theta_{0}^{3} ; \quad \theta_{2}(0)=0, \quad \dot{\theta}_{2}(0)=0
\end{aligned}
$$

By taking $\omega_{1}=0$, we find as before that

$$
\theta_{0}(t)=\cos t, \quad \text { and } \quad \theta_{1}=0
$$

Note that if $\omega_{1} \neq 0$, then

$$
\begin{equation*}
\ddot{\theta}_{1}+\theta_{1}=2 \omega_{1} \cos t \tag{5}
\end{equation*}
$$

Since the right hand side solves the homogeneous equation, $\ddot{\theta}+\theta=0$, any particular solution of (5) contains a non-zero term like

$$
A t \cos t+B t \sin t
$$

That is an unwanted unbounded/secular term. Let us continue to determine θ_{2} :

$$
\begin{align*}
\ddot{\theta}_{2}+\theta_{2} & =\frac{1}{6} \theta_{0}^{3}-\left(2 \omega_{2}+\omega_{1}^{2}\right) \ddot{\theta}_{0}-2 \omega_{1} \ddot{\theta}_{1} \\
& =\frac{1}{6} \cos ^{3} t+2 \omega_{2} \cos t \\
& =\frac{1}{6} \frac{1}{4}(3 \cos t+\cos 3 t)+2 \omega_{2} \cos t \\
& =\frac{1}{24} \cos 3 t+\left(\frac{3}{24}+2 \omega_{2}\right) \cos t \tag{6}
\end{align*}
$$

Here again $\cos t$ solves the homogeneous equation, and unbounded/secular terms can only be avoided if $\omega_{2}=-\frac{1}{2} \cdot \frac{3}{24}=-\frac{1}{16}$. In this case the particular solution has the form

$$
\theta_{2}^{p}=C_{1} \cos 3 t+C_{2} \sin 3 t
$$

which solves (6) when $C_{1}=-\frac{1}{192}$ and $C_{2}=0$. This general solution of (6) is then

$$
\theta_{2}=A \cos t+B \sin t-\frac{1}{192} \cos 3 t
$$

and initial conditions, $\theta_{2}(0)=0=\dot{\theta}_{2}(0)$ implies that

$$
\theta_{2}=\frac{1}{192}(\cos t-\cos 3 t)
$$

Hence we have found the following two approximations

$$
\begin{aligned}
\theta(t) & =\theta_{0}(t)+\mathcal{O}(\epsilon) \\
& =\cos (t)+\mathcal{O}(\epsilon)
\end{aligned}
$$

and

$$
\begin{aligned}
\theta(t) & =\theta_{0}\left(\left(1-\frac{\epsilon^{2}}{16}\right) t\right)+\epsilon^{2} \theta_{2}\left(\left(1-\frac{\epsilon^{2}}{16}\right) t\right)+\mathcal{O}\left(\epsilon^{3}\right) \\
& =\cos \left(\left(1-\frac{\epsilon^{2}}{16}\right) t\right)+\frac{\epsilon^{2}}{192}\left[\cos \left(\left(1-\frac{\epsilon^{2}}{16}\right) t\right)-\cos \left(3\left(1-\frac{\epsilon^{2}}{16}\right) t\right)\right]+\mathcal{O}\left(\epsilon^{3}\right)
\end{aligned}
$$

Note that there are no unbounded/secular terms anymore. These approximations can be expected to be good for all $t>0$.

2 Inserting $x=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\cdots$ into the equation and collecting terms of the same order of ε, we get

$$
\ddot{x}_{0}+\varepsilon\left(\ddot{x}_{1}+2 \dot{x}_{0}+x_{0}\right)+\varepsilon^{2}\left(\ddot{x}_{2}+2 \dot{x}_{1}+x_{1}\right)+\ldots=0 .
$$

We hence get the following equations for x_{0} and x_{1} :

$$
\begin{aligned}
& \ddot{x}_{0}(t)=0 \\
& \ddot{x}_{1}(t)=-2 \dot{x}_{0}(t)-x_{0}(t) .
\end{aligned}
$$

For the initial conditions, it is natural to set

$$
\begin{array}{ll}
x_{0}(0)=0, & \dot{x}_{0}(0)=1 \\
x_{1}(0)=0, & \dot{x}_{1}(0)=-1
\end{array}
$$

Solving first for x_{0}, we get $x_{0}(t)=t$, which inserted into the second equation leads to

$$
\ddot{x}_{1}(t)=-2-t,
$$

from which we get $x_{1}(t)=-\left(\frac{1}{6} t^{3}+t^{2}+1\right)$. Hence,

$$
x(t)=t-\varepsilon\left(\frac{1}{6} t^{3}+t^{2}+1\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

3 We assume $y=y_{0}+\varepsilon y_{1}+\cdots$, which we insert into the equation, before collecting the terms of the same order of ε, to get

$$
\left(\dot{y}_{0}-y_{0}\right)+\varepsilon\left(\dot{y}_{1}-y_{1}-y_{0}^{2} \mathrm{e}^{-t}\right)+\mathcal{O}\left(\varepsilon^{2}\right)=0
$$

We hence get the following equations for y_{0} and y_{1} :

$$
\begin{aligned}
& \dot{y}_{0}(t)-y_{0}(t)=0 \\
& \dot{y}_{1}(t)-y_{1}(t)=y_{0}^{2}(t) \mathrm{e}^{-t}
\end{aligned}
$$

For the initial conditions, it is here natural to set $y_{0}(0)=1$ and $y_{1}(0)=0$.
Solving first for y_{0}, we get $y_{0}(t)=\mathrm{e}^{t}$, which inserted into the second equation leads to

$$
\dot{y}_{1}(t)-y_{1}(t)=\mathrm{e}^{t} .
$$

Multiplying both sides of the equation with e^{-t}, we get

$$
\frac{d}{d t}\left(\mathrm{e}^{-t} y_{1}(t)\right)=1
$$

so that

$$
\mathrm{e}^{-t} y_{1}(t)=t+C
$$

From the initial condition we find $C=0$, and thus

$$
y_{1}(t)=t \mathrm{e}^{t}
$$

Collected, we get

$$
y(t)=\mathrm{e}^{t}+\varepsilon t \mathrm{e}^{t}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

4 First we note that by the symmetry in the problem, u has to be an even function. To see this let $v(x)=u(-x)$ and observe that both v and u satisfies the equation. As u is even we have that $u^{\prime}(-x)=-u^{\prime}(x)$. Continuity of u^{\prime} at 0 gives that $u^{\prime}(0)=0$ is the correct boundary condition.
By looking at the equation and boundary conditions we observe that for $x \approx 1$, $\epsilon u^{\prime \prime} \approx-1$. Hence $\left|u^{\prime \prime}\right| \gg 1$ there, and if $u \sim \frac{1}{2}$ for x close to $0, u^{\prime \prime}$ must be of order 1 close to $x=0$. This means that we should use a boundary layer around $x=1$. First we find the outer solution u_{O}. We neglect the term $\epsilon u^{\prime \prime}$ in the equation and obtain

$$
\left(2-x^{2}\right) u_{O}=1, \text { or } u_{O}(x)=\frac{1}{2-x^{2}}
$$

We see that $u_{O}^{\prime}(0)=0$. Now we turn to the inner solution. Rescale $x=1-\delta \xi$ and $U(\xi)=u(x)$. This implies $\frac{1}{\delta^{2}} U^{\prime \prime}(\xi)=u^{\prime \prime}(x)$, which gives the equation

$$
\begin{aligned}
\frac{\epsilon}{\delta^{2}} U^{\prime \prime}-\left(2-(1-\delta \xi)^{2}\right) U & =-1 \\
\frac{\epsilon}{\delta^{2}} U^{\prime \prime}-(1+\mathcal{O}(\delta)) U & =-1
\end{aligned}
$$

We balance the terms by choosing $\delta=\epsilon^{\frac{1}{2}}$. The linear ODE has general solution $U(\xi)=c_{1} e^{\xi}+c_{2} e^{-\xi}+1$. To determine c_{1} and c_{2} we need two boundary conditions. Observe first that $\xi=0$ corresponds to $x=1$. Thus $U(0)=u(1)=0$, and the first equation is

$$
c_{1}+c_{2}+1=0
$$

We want the inner solution U and the outer solution u to match in a nice manner. That is, the transition from outside to inside the boundary layer should be continuous when $\epsilon \downarrow 0$. But as $\epsilon \downarrow 0$ the boundary layer shrinks as well. Let $\Theta(\epsilon)$ be a path

Figure 1: The path Θ in the plane.

in the plane such that $\Theta(\epsilon) \rightarrow 0$ as $\epsilon \downarrow 0$. The idea is to choose Θ such that for each $\epsilon>0$ the function value $\Theta(\epsilon)$ lies in the intermediate region, at least for small ϵ. This happens if $\lim _{\epsilon \downarrow 0} \frac{\theta(\epsilon)}{\delta(\epsilon)}=\infty$. See Figure 4. To sum up we have the following conditions on the function Θ

$$
\lim _{\epsilon \downarrow 0} \Theta(\epsilon)=0, \quad \lim _{\epsilon \downarrow 0} \frac{\Theta(\epsilon)}{\delta(\epsilon)}=\infty .
$$

The nice behaviour across the boundary layer can be formulated

$$
\lim _{\epsilon \downarrow 0} u_{O}(1-\eta \Theta(\epsilon))=\lim _{\epsilon \downarrow 0} U\left(\frac{\eta \Theta(\epsilon)}{\delta(\epsilon)}\right),
$$

for any parameter $\eta>0$. In our case the left hand side will be equal to one. Thus

$$
\lim _{\epsilon \downarrow 0} c_{1} e^{\frac{n \Theta}{\sqrt{\epsilon}}}+c_{2} e^{-\frac{n \Theta}{\sqrt{\epsilon}}}=1-1=0 .
$$

This gives $c_{1}=0$ (or the exponential would go to infinity due to the limit of $\frac{\Theta}{\delta}$) and we get $c_{2}=-1$. The uniform approximation is then given by

$$
u_{u}(x)=\frac{1}{2-x^{2}}+1-e^{-\frac{1-x}{\sqrt{\epsilon}}}-\lim _{\epsilon \downarrow 0} u_{O}(1-\eta \Theta)=\frac{1}{2-x^{2}}-e^{-\frac{1-x}{\sqrt{\epsilon}}} .
$$

