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Solutions to exercise set 3

1 a) Note that there is no motion in the normal direction, and hence the normal
forces are at equilibrium:

0 = m
d2~x

dt2
· ~N = ~Fg · ~N + ~Fr · ~N + ~Ft · ~N

Since ~Ft is a normal force, it is determined by this equation: ~Ft = −(~Fg · ~N) ~N ,

(~Fr · ~N = 0) we will not need this equation here. For the tangential components,
Newton’s 2nd law yields

m
d2~x

dt2
· ~T = ~Fg · ~T + ~Fr · ~T + ~Ft · ~T(1)

Note that

~Fg · ~T = −mg~e2 · ~T = −mg cosφ = −mg sin θ

~Ft · ~T = 0

In polar coordinates we find that

~x(t) = L

(
cosφ(t)
sinφ(t)

)
~̇x(t) = L

(
− sinφ(t)
cosφ(t)

)
φ̇(t)

~̈x(t) = L

(
− cosφ(t)
− sinφ(t)

)
φ̇(t)2 + L

(
− sinφ(t)
cosφ(t)

)
φ̈(t)

~T (~x(t)) =

(
− sinφ(t)
cosφ(t)

)
~̈x · ~T = 0 + L · 1 · φ̈(t)

~Fr · ~T = −kLφ̇(t)

Since θ = φ− 3π
2 we find that (1) is equivalent to

mLθ̈ = −mg sin θ − kLθ̇

which is what we should show.

b) Since max |θ| = α, we choose

θ = αθ̄.

The time scale

t = T t̄,
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is determined from balancing acceleration and gravity terms (friction is small)
in the scaled equation:

mL
α

T 2

d2θ̄

dt̄2
= −mg sin(αθ̄)− kLα

T

dθ̄

dt̄
,(2)

i.e.

mL
α

T 2

d2θ̄

dt̄2
∼ −mg sin(αθ̄)

sinαθ̄≈αθ̄∼α
=⇒
¨̄θ∼1

mL
α

T 2
∼ mgα⇒ T ∼

√
L

g
.

We set θ = αθ̄ and t =
√

L
g t̄ and equation (2) becomes

d2θ̄

dt̄2
= − 1

α
sin(αθ̄)− k

m

√
L

g

dθ̄

dt̄
(3)

For the initial conditions we have

αθ̄(0) = α⇒ θ̄(0) = 1 and ˙̄θ(0) = 0.

c) We are given

θ̈ = −1

ε
sin(εθ), θ(0) = 1, θ̇(0) = 0.(4)

Insert θ = θ0 + εθ1 + ε2θ2 + · · · into (4) and expand:

θ̈0 + εθ̈1 + ε2θ̈2 = −1

ε
sin(ε(θ0 + εθ1 + · · · ))

= −1

ε

(
ε(θ0 + εθ1 + · · · )− 1

6
ε3(θ0 + εθ1 + · · · )3 + · · ·

)
= −θ0 − εθ1 − ε2(θ2 −

1

6
θ3

0)− ε3(θ3 −
1

2
θ1θ

2
0) + · · ·

θ0(0) + εθ1(0) + · · · = 1

θ̇0(0) + εθ̇1(0) + · · · = 0

Equate terms of equal order in ε :

O(1) : θ̈0 = −θ0; θ0(0) = 1, θ̇0(0) = 0

O(ε) : θ̈1 = −θ1; θ1(0) = 0, θ̇1(0) = 0

O(ε2) : θ̈2 = −θ2 +
1

6
θ3

0; θ2(0) = 0, θ̇2(0) = 0

O(ε3) : θ̈3 = −θ3 +
1

2
θ1θ

2
0; θ3(0) = 0, θ̇3(0) = 0

The solutions are

θ0 = cos t, θ1 = 0

For θ2 we find that

θ̈2 = −θ2 +
1

6
cos3 t

Hint
= −θ2 +

1

24
(3 cos t+ cos 3t)

We differentiate the solution given in the text twice

θ̈2 = − 1

192
(cos t− 9 cos 3t) +

1

16
(2 cos t− t sin t)

and check that it satisfies the previous equation with θ2(0) = 0 = θ̇2(0).
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d) Inserting into (4) we find

ω2(θ̈0 + εθ̈1 + · · · ) = · · · = −1

ε
sin(ε(θ0 + εθ1 + · · · ))

or

(1 + εω1 + ε2ω2 + · · · )2(θ̈0 + εθ̈1 + ε2θ̈2 + · · · )

= −(θ0 + εθ1 + ε2θ2 + · · · ) +
1

6
ε2(θ0 + εθ1 + · · · )3 + · · ·

or

θ̈0 + ε(2ω1θ̈0 + θ̈1) + ε2((2ω2 + ω2
1)θ̈0 + 2ω1θ̈1 + θ̈2) = −θ0 − εθ1 − ε2

(
θ2 −

1

6
θ3

0

)
− · · ·

The initial conditions are as before. We find

O(1) : θ̈0 = −θ0; θ0(0) = 1, θ̇0(0) = 0

O(ε) : 2ω1θ̈0 + θ̈1 = −θ1; θ1(0) = 0, θ̇1(0) = 0

O(ε2) : (2ω2 + ω2
1)θ̈0 + 2ω1θ̈1 + θ̈2 = −θ2 +

1

6
θ3

0; θ2(0) = 0, θ̇2(0) = 0

...

By taking ω1 = 0, we find as before that

θ0(t) = cos t, and θ1 = 0.

Note that if ω1 6= 0, then

θ̈1 + θ1 = 2ω1 cos t.(5)

Since the right hand side solves the homogeneous equation, θ̈ + θ = 0, any
particular solution of (5) contains a non-zero term like

At cos t+Bt sin t.

That is an unwanted unbounded/secular term. Let us continue to determine
θ2:

θ̈2 + θ2 =
1

6
θ3

0 − (2ω2 + ω2
1)θ̈0 − 2ω1θ̈1

=
1

6
cos3 t+ 2ω2 cos t

=
1

6

1

4
(3 cos t+ cos 3t) + 2ω2 cos t

=
1

24
cos 3t+ (

3

24
+ 2ω2) cos t(6)

Here again cos t solves the homogeneous equation, and unbounded/secular
terms can only be avoided if ω2 = −1

2 ·
3
24 = − 1

16 . In this case the partic-
ular solution has the form

θp2 = C1 cos 3t+ C2 sin 3t,
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which solves (6) when C1 = − 1
192 and C2 = 0. This general solution of (6) is

then

θ2 = A cos t+B sin t− 1

192
cos 3t

and initial conditions, θ2(0) = 0 = θ̇2(0) implies that

θ2 =
1

192
(cos t− cos 3t)

Hence we have found the following two approximations

θ(t) = θ0(t) +O(ε)

= cos(t) +O(ε)

and

θ(t) = θ0

((
1− ε2

16

)
t

)
+ ε2θ2

((
1− ε2

16

)
t

)
+O(ε3)

= cos

((
1− ε2

16

)
t

)
+

ε2

192

[
cos

((
1− ε2

16

)
t

)
− cos

(
3

(
1− ε2

16

)
t

)]
+O(ε3)

Note that there are no unbounded/secular terms anymore. These approxima-
tions can be expected to be good for all t > 0.

2 Inserting x = x0 + εx1 + ε2x2 + · · · into the equation and collecting terms of the
same order of ε, we get

ẍ0 + ε (ẍ1 + 2ẋ0 + x0) + ε2 (ẍ2 + 2ẋ1 + x1) + . . . = 0.

We hence get the following equations for x0 and x1:

ẍ0(t) = 0,

ẍ1(t) = −2ẋ0(t)− x0(t).

For the initial conditions, it is natural to set

x0(0) = 0, ẋ0(0) = 1,

x1(0) = 0, ẋ1(0) = −1.

Solving first for x0, we get x0(t) = t, which inserted into the second equation leads
to

ẍ1(t) = −2− t,

from which we get x1(t) = −
(

1
6 t

3 + t2 + 1
)
. Hence,

x(t) = t− ε
(

1

6
t3 + t2 + 1

)
+O(ε2).

3 We assume y = y0 + εy1 + · · · , which we insert into the equation, before collecting
the terms of the same order of ε, to get

(ẏ0 − y0) + ε
(
ẏ1 − y1 − y2

0e−t
)

+O(ε2) = 0.
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We hence get the following equations for y0 and y1:

ẏ0(t)− y0(t) = 0,

ẏ1(t)− y1(t) = y2
0(t)e−t.

For the initial conditions, it is here natural to set y0(0) = 1 and y1(0) = 0.
Solving first for y0, we get y0(t) = et, which inserted into the second equation leads
to

ẏ1(t)− y1(t) = et.

Multiplying both sides of the equation with e−t, we get

d

dt

(
e−ty1(t)

)
= 1.

so that
e−ty1(t) = t+ C.

From the initial condition we find C = 0, and thus

y1(t) = tet.

Collected, we get
y(t) = et + εtet +O(ε2).

4 First we note that by the symmetry in the problem, u has to be an even function. To
see this let v(x) = u(−x) and observe that both v and u satisfies the equation. As
u is even we have that u′(−x) = −u′(x). Continuity of u′ at 0 gives that u′(0) = 0
is the correct boundary condition.

By looking at the equation and boundary conditions we observe that for x ≈ 1,
εu′′ ≈ −1. Hence |u′′| � 1 there, and if u ∼ 1

2 for x close to 0, u′′ must be of order 1
close to x = 0. This means that we should use a boundary layer around x = 1. First
we find the outer solution uO. We neglect the term εu′′ in the equation and obtain

(2− x2)uO = 1, or uO(x) =
1

2− x2
.

We see that u′O(0) = 0. Now we turn to the inner solution. Rescale x = 1− δξ and
U(ξ) = u(x). This implies 1

δ2U
′′(ξ) = u′′(x), which gives the equation

ε

δ2
U ′′ −

(
2− (1− δξ)2

)
U = −1

ε

δ2
U ′′ − (1 +O(δ))U = −1.

We balance the terms by choosing δ = ε
1
2 . The linear ODE has general solution

U(ξ) = c1e
ξ + c2e

−ξ + 1. To determine c1 and c2 we need two boundary conditions.
Observe first that ξ = 0 corresponds to x = 1. Thus U(0) = u(1) = 0, and the first
equation is

c1 + c2 + 1 = 0.

We want the inner solution U and the outer solution u to match in a nice manner.
That is, the transition from outside to inside the boundary layer should be continuous
when ε ↓ 0. But as ε ↓ 0 the boundary layer shrinks as well. Let Θ(ε) be a path
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Figure 1: The path Θ in the plane.

in the plane such that Θ(ε) → 0 as ε ↓ 0. The idea is to choose Θ such that for
each ε > 0 the function value Θ(ε) lies in the intermediate region, at least for small

ε. This happens if lim
ε↓0

Θ(ε)
δ(ε) = ∞. See Figure 4. To sum up we have the following

conditions on the function Θ

lim
ε↓0

Θ(ε) = 0, lim
ε↓0

Θ(ε)

δ(ε)
=∞.

The nice behaviour across the boundary layer can be formulated

lim
ε↓0

uO (1− ηΘ(ε)) = lim
ε↓0

U

(
ηΘ(ε)

δ(ε)

)
,

for any parameter η > 0. In our case the left hand side will be equal to one. Thus

lim
ε↓0

c1e
ηΘ√
ε + c2e

− ηΘ√
ε = 1− 1 = 0.

This gives c1 = 0 (or the exponential would go to infinity due to the limit of Θ
δ ) and

we get c2 = −1. The uniform approximation is then given by

uu(x) =
1

2− x2
+ 1− e−

1−x√
ε − lim

ε↓0
uO(1− ηΘ) =

1

2− x2
− e−

1−x√
ε .
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