

TMA4195 Mathematical Modelling Autumn 2017

Solutions to exercise set 3

1 a) Note that there is no motion in the normal direction, and hence the normal forces are at equilibrium:

$$0 = m \frac{\mathrm{d}^2 \vec{x}}{\mathrm{d}t^2} \cdot \vec{N} = \vec{F}_g \cdot \vec{N} + \vec{F}_r \cdot \vec{N} + \vec{F}_t \cdot \vec{N}$$

Since  $\vec{F}_t$  is a normal force, it is determined by this equation:  $\vec{F}_t = -(\vec{F}_g \cdot \vec{N})\vec{N}$ ,  $(\vec{F}_r \cdot \vec{N} = 0)$  we will not need this equation here. For the tangential components, Newton's 2nd law yields

(1) 
$$m\frac{\mathrm{d}^2\vec{x}}{\mathrm{d}t^2}\cdot\vec{T} = \vec{F}_g\cdot\vec{T} + \vec{F}_r\cdot\vec{T} + \vec{F}_t\cdot\vec{T}$$

Note that

$$\begin{split} \vec{F}_g \cdot \vec{T} &= -mg \vec{e}_2 \cdot \vec{T} = -mg \cos \phi = -mg \sin \theta \\ \vec{F}_t \cdot \vec{T} &= 0 \end{split}$$

In polar coordinates we find that

$$\vec{x}(t) = L \begin{pmatrix} \cos \phi(t) \\ \sin \phi(t) \end{pmatrix}$$
$$\vec{x}(t) = L \begin{pmatrix} -\sin \phi(t) \\ \cos \phi(t) \end{pmatrix} \dot{\phi}(t)$$
$$\vec{x}(t) = L \begin{pmatrix} -\cos \phi(t) \\ -\sin \phi(t) \end{pmatrix} \dot{\phi}(t)^2 + L \begin{pmatrix} -\sin \phi(t) \\ \cos \phi(t) \end{pmatrix} \ddot{\phi}(t)$$
$$\vec{T}(\vec{x}(t)) = \begin{pmatrix} -\sin \phi(t) \\ \cos \phi(t) \end{pmatrix}$$
$$\vec{x} \cdot \vec{T} = 0 + L \cdot 1 \cdot \ddot{\phi}(t)$$
$$\vec{F}_r \cdot \vec{T} = -kL\dot{\phi}(t)$$

Since  $\theta = \phi - \frac{3\pi}{2}$  we find that (1) is equivalent to

$$mL\ddot{\theta} = -mg\sin\theta - kL\dot{\theta}$$

which is what we should show.

b) Since  $\max |\theta| = \alpha$ , we choose

$$\theta = \alpha \bar{\theta}.$$

The time scale

 $t = T\bar{t},$ 

is determined from balancing acceleration and gravity terms (friction is small) in the scaled equation:

(2) 
$$mL\frac{\alpha}{T^2}\frac{\mathrm{d}^2\bar{\theta}}{\mathrm{d}\bar{t}^2} = -mg\sin(\alpha\bar{\theta}) - kL\frac{\alpha}{T}\frac{\mathrm{d}\bar{\theta}}{\mathrm{d}\bar{t}}$$

i.e.

$$mL\frac{\alpha}{T^2}\frac{\mathrm{d}^2\bar{\theta}}{\mathrm{d}\bar{t}^2} \sim -mg\sin(\alpha\bar{\theta}) \stackrel{\sin\alpha\bar{\theta}\approx\alpha\bar{\theta}\sim\alpha}{\underset{\bar{\theta}\sim1}{\overset{\cong}{\longrightarrow}}} mL\frac{\alpha}{T^2} \sim mg\alpha \Rightarrow T \sim \sqrt{\frac{L}{g}}.$$

We set  $\theta = \alpha \overline{\theta}$  and  $t = \sqrt{\frac{L}{g}} \overline{t}$  and equation (2) becomes

(3) 
$$\frac{\mathrm{d}^2\bar{\theta}}{\mathrm{d}\bar{t}^2} = -\frac{1}{\alpha}\sin(\alpha\bar{\theta}) - \frac{k}{m}\sqrt{\frac{L}{g}\frac{\mathrm{d}\bar{\theta}}{\mathrm{d}\bar{t}}}$$

For the initial conditions we have

$$\alpha \bar{\theta}(0) = \alpha \Rightarrow \bar{\theta}(0) = 1 \text{ and } \dot{\bar{\theta}}(0) = 0.$$

c) We are given

(4) 
$$\ddot{\theta} = -\frac{1}{\epsilon}\sin(\epsilon\theta), \quad \theta(0) = 1, \ \dot{\theta}(0) = 0.$$

Insert  $\theta = \theta_0 + \epsilon \theta_1 + \epsilon^2 \theta_2 + \cdots$  into (4) and expand:

$$\begin{aligned} \ddot{\theta}_0 + \epsilon \ddot{\theta}_1 + \epsilon^2 \ddot{\theta}_2 &= -\frac{1}{\epsilon} \sin(\epsilon(\theta_0 + \epsilon \theta_1 + \cdots)) \\ &= -\frac{1}{\epsilon} \left( \epsilon(\theta_0 + \epsilon \theta_1 + \cdots) - \frac{1}{6} \epsilon^3(\theta_0 + \epsilon \theta_1 + \cdots)^3 + \cdots \right) \\ &= -\theta_0 - \epsilon \theta_1 - \epsilon^2(\theta_2 - \frac{1}{6} \theta_0^3) - \epsilon^3(\theta_3 - \frac{1}{2} \theta_1 \theta_0^2) + \cdots \\ &= \theta_0(0) + \epsilon \theta_1(0) + \cdots = 1 \\ \dot{\theta}_0(0) + \epsilon \dot{\theta}_1(0) + \cdots = 0 \end{aligned}$$

Equate terms of equal order in  $\epsilon$  :

$$\mathcal{O}(1): \quad \ddot{\theta}_0 = -\theta_0; \quad \theta_0(0) = 1, \quad \dot{\theta}_0(0) = 0$$
  

$$\mathcal{O}(\epsilon): \quad \ddot{\theta}_1 = -\theta_1; \quad \theta_1(0) = 0, \quad \dot{\theta}_1(0) = 0$$
  

$$\mathcal{O}(\epsilon^2): \quad \ddot{\theta}_2 = -\theta_2 + \frac{1}{6}\theta_0^3; \quad \theta_2(0) = 0, \quad \dot{\theta}_2(0) = 0$$
  

$$\mathcal{O}(\epsilon^3): \quad \ddot{\theta}_3 = -\theta_3 + \frac{1}{2}\theta_1\theta_0^2; \quad \theta_3(0) = 0, \quad \dot{\theta}_3(0) = 0$$

The solutions are

$$\theta_0 = \cos t, \ \theta_1 = 0$$

For  $\theta_2$  we find that

$$\ddot{\theta}_2 = -\theta_2 + \frac{1}{6}\cos^3 t \stackrel{\text{Hint}}{=} -\theta_2 + \frac{1}{24}(3\cos t + \cos 3t)$$

We differentiate the solution given in the text twice

$$\ddot{\theta}_2 = -\frac{1}{192} \left( \cos t - 9 \cos 3t \right) + \frac{1}{16} (2 \cos t - t \sin t)$$

and check that it satisfies the previous equation with  $\theta_2(0) = 0 = \dot{\theta}_2(0)$ .

d) Inserting into (4) we find

$$\omega^2(\ddot{\theta}_0 + \epsilon \ddot{\theta}_1 + \cdots) = \cdots = -\frac{1}{\epsilon} \sin(\epsilon(\theta_0 + \epsilon \theta_1 + \cdots))$$

or

$$(1 + \epsilon\omega_1 + \epsilon^2\omega_2 + \cdots)^2 (\ddot{\theta}_0 + \epsilon\ddot{\theta}_1 + \epsilon^2\ddot{\theta}_2 + \cdots)$$
  
=  $-(\theta_0 + \epsilon\theta_1 + \epsilon^2\theta_2 + \cdots) + \frac{1}{6}\epsilon^2(\theta_0 + \epsilon\theta_1 + \cdots)^3 + \cdots$ 

or

$$\ddot{\theta}_0 + \epsilon (2\omega_1\ddot{\theta}_0 + \ddot{\theta}_1) + \epsilon^2 ((2\omega_2 + \omega_1^2)\ddot{\theta}_0 + 2\omega_1\ddot{\theta}_1 + \ddot{\theta}_2) = -\theta_0 - \epsilon\theta_1 - \epsilon^2 \left(\theta_2 - \frac{1}{6}\theta_0^3\right) - \cdots$$

The initial conditions are as before. We find

$$\begin{aligned} \mathcal{O}(1): & \ddot{\theta}_0 = -\theta_0; \quad \theta_0(0) = 1, \quad \dot{\theta}_0(0) = 0 \\ \mathcal{O}(\epsilon): & 2\omega_1 \ddot{\theta}_0 + \ddot{\theta}_1 = -\theta_1; \quad \theta_1(0) = 0, \quad \dot{\theta}_1(0) = 0 \\ \mathcal{O}(\epsilon^2): & (2\omega_2 + \omega_1^2) \ddot{\theta}_0 + 2\omega_1 \ddot{\theta}_1 + \ddot{\theta}_2 = -\theta_2 + \frac{1}{6} \theta_0^3; \quad \theta_2(0) = 0, \quad \dot{\theta}_2(0) = 0 \\ \vdots \end{aligned}$$

By taking  $\omega_1 = 0$ , we find as before that

$$\theta_0(t) = \cos t$$
, and  $\theta_1 = 0$ .

Note that if  $\omega_1 \neq 0$ , then

(5) 
$$\ddot{\theta}_1 + \theta_1 = 2\omega_1 \cos t.$$

Since the right hand side solves the homogeneous equation,  $\ddot{\theta} + \theta = 0$ , any particular solution of (5) contains a non-zero term like

$$At\cos t + Bt\sin t.$$

That is an unwanted unbounded/secular term. Let us continue to determine  $\theta_2$ :

(6)  
$$\ddot{\theta}_{2} + \theta_{2} = \frac{1}{6}\theta_{0}^{3} - (2\omega_{2} + \omega_{1}^{2})\ddot{\theta}_{0} - 2\omega_{1}\ddot{\theta}_{1}$$
$$= \frac{1}{6}\cos^{3}t + 2\omega_{2}\cos t$$
$$= \frac{1}{6}\frac{1}{4}(3\cos t + \cos 3t) + 2\omega_{2}\cos t$$
$$= \frac{1}{24}\cos 3t + (\frac{3}{24} + 2\omega_{2})\cos t$$

Here again  $\cos t$  solves the homogeneous equation, and unbounded/secular terms can only be avoided if  $\omega_2 = -\frac{1}{2} \cdot \frac{3}{24} = -\frac{1}{16}$ . In this case the particular solution has the form

$$\theta_2^p = C_1 \cos 3t + C_2 \sin 3t,$$

which solves (6) when  $C_1 = -\frac{1}{192}$  and  $C_2 = 0$ . This general solution of (6) is then

$$\theta_2 = A\cos t + B\sin t - \frac{1}{192}\cos 3t$$

and initial conditions,  $\theta_2(0) = 0 = \dot{\theta}_2(0)$  implies that

$$\theta_2 = \frac{1}{192}(\cos t - \cos 3t)$$

Hence we have found the following two approximations

$$\theta(t) = \theta_0(t) + \mathcal{O}(\epsilon)$$
$$= \cos(t) + \mathcal{O}(\epsilon)$$

and

$$\theta(t) = \theta_0 \left( \left( 1 - \frac{\epsilon^2}{16} \right) t \right) + \epsilon^2 \theta_2 \left( \left( 1 - \frac{\epsilon^2}{16} \right) t \right) + \mathcal{O}(\epsilon^3)$$
$$= \cos \left( \left( 1 - \frac{\epsilon^2}{16} \right) t \right) + \frac{\epsilon^2}{192} \left[ \cos \left( \left( 1 - \frac{\epsilon^2}{16} \right) t \right) - \cos \left( 3 \left( 1 - \frac{\epsilon^2}{16} \right) t \right) \right] + \mathcal{O}(\epsilon^3)$$

Note that there are no unbounded/secular terms anymore. These approximations can be expected to be good for all t > 0.

2 Inserting  $x = x_0 + \varepsilon x_1 + \varepsilon^2 x_2 + \cdots$  into the equation and collecting terms of the same order of  $\varepsilon$ , we get

$$\ddot{x}_0 + \varepsilon \left( \ddot{x}_1 + 2\dot{x}_0 + x_0 \right) + \varepsilon^2 \left( \ddot{x}_2 + 2\dot{x}_1 + x_1 \right) + \ldots = 0.$$

We hence get the following equations for  $x_0$  and  $x_1$ :

$$\ddot{x}_0(t) = 0,$$
  
 $\ddot{x}_1(t) = -2\dot{x}_0(t) - x_0(t)$ 

For the initial conditions, it is natural to set

$$x_0(0) = 0,$$
  $\dot{x}_0(0) = 1,$   
 $x_1(0) = 0,$   $\dot{x}_1(0) = -1.$ 

Solving first for  $x_0$ , we get  $x_0(t) = t$ , which inserted into the second equation leads to

$$\ddot{x}_1(t) = -2 - t,$$

from which we get  $x_1(t) = -\left(\frac{1}{6}t^3 + t^2 + 1\right)$ . Hence,

$$x(t) = t - \varepsilon \left(\frac{1}{6}t^3 + t^2 + 1\right) + \mathcal{O}(\varepsilon^2).$$

3 We assume  $y = y_0 + \varepsilon y_1 + \cdots$ , which we insert into the equation, before collecting the terms of the same order of  $\varepsilon$ , to get

$$(\dot{y}_0 - y_0) + \varepsilon \left( \dot{y}_1 - y_1 - y_0^2 \mathrm{e}^{-t} \right) + \mathcal{O}(\varepsilon^2) = 0.$$

We hence get the following equations for  $y_0$  and  $y_1$ :

$$\dot{y}_0(t) - y_0(t) = 0,$$
  
 $\dot{y}_1(t) - y_1(t) = y_0^2(t) e^{-t}.$ 

For the initial conditions, it is here natural to set  $y_0(0) = 1$  and  $y_1(0) = 0$ . Solving first for  $y_0$ , we get  $y_0(t) = e^t$ , which inserted into the second equation leads to

$$\dot{y}_1(t) - y_1(t) = \mathrm{e}^t.$$

Multiplying both sides of the equation with  $e^{-t}$ , we get

$$\frac{d}{dt}\left(\mathrm{e}^{-t}y_1(t)\right) = 1.$$

so that

$$e^{-t}y_1(t) = t + C.$$

From the initial condition we find C = 0, and thus

 $y_1(t) = t e^t$ .

Collected, we get

$$y(t) = e^t + \varepsilon t e^t + \mathcal{O}(\varepsilon^2).$$

4 First we note that by the symmetry in the problem, u has to be an even function. To see this let v(x) = u(-x) and observe that both v and u satisfies the equation. As u is even we have that u'(-x) = -u'(x). Continuity of u' at 0 gives that u'(0) = 0 is the correct boundary condition.

By looking at the equation and boundary conditions we observe that for  $x \approx 1$ ,  $\epsilon u'' \approx -1$ . Hence  $|u''| \gg 1$  there, and if  $u \sim \frac{1}{2}$  for x close to 0, u'' must be of order 1 close to x = 0. This means that we should use a boundary layer around x = 1. First we find the outer solution  $u_O$ . We neglect the term  $\epsilon u''$  in the equation and obtain

$$(2-x^2)u_O = 1$$
, or  $u_O(x) = \frac{1}{2-x^2}$ .

We see that  $u'_O(0) = 0$ . Now we turn to the inner solution. Rescale  $x = 1 - \delta \xi$  and  $U(\xi) = u(x)$ . This implies  $\frac{1}{\delta^2}U''(\xi) = u''(x)$ , which gives the equation

$$\frac{\epsilon}{\delta^2}U'' - \left(2 - (1 - \delta\xi)^2\right)U = -1$$
$$\frac{\epsilon}{\delta^2}U'' - (1 + \mathcal{O}(\delta))U = -1.$$

We balance the terms by choosing  $\delta = \epsilon^{\frac{1}{2}}$ . The linear ODE has general solution  $U(\xi) = c_1 e^{\xi} + c_2 e^{-\xi} + 1$ . To determine  $c_1$  and  $c_2$  we need two boundary conditions. Observe first that  $\xi = 0$  corresponds to x = 1. Thus U(0) = u(1) = 0, and the first equation is

$$c_1 + c_2 + 1 = 0.$$

We want the inner solution U and the outer solution u to match in a nice manner. That is, the transition from outside to inside the boundary layer should be continuous when  $\epsilon \downarrow 0$ . But as  $\epsilon \downarrow 0$  the boundary layer shrinks as well. Let  $\Theta(\epsilon)$  be a path



in the plane such that  $\Theta(\epsilon) \to 0$  as  $\epsilon \downarrow 0$ . The idea is to choose  $\Theta$  such that for each  $\epsilon > 0$  the function value  $\Theta(\epsilon)$  lies in the intermediate region, at least for small  $\epsilon$ . This happens if  $\lim_{\epsilon \downarrow 0} \frac{\Theta(\epsilon)}{\delta(\epsilon)} = \infty$ . See Figure 4. To sum up we have the following conditions on the function  $\Theta$ 

$$\lim_{\epsilon \downarrow 0} \Theta(\epsilon) = 0, \qquad \lim_{\epsilon \downarrow 0} \frac{\Theta(\epsilon)}{\delta(\epsilon)} = \infty.$$

The nice behaviour across the boundary layer can be formulated

$$\lim_{\epsilon \downarrow 0} u_O \left( 1 - \eta \Theta(\epsilon) \right) = \lim_{\epsilon \downarrow 0} U \left( \frac{\eta \Theta(\epsilon)}{\delta(\epsilon)} \right),$$

for any parameter  $\eta > 0$ . In our case the left hand side will be equal to one. Thus

$$\lim_{\epsilon \downarrow 0} c_1 e^{\frac{\eta \Theta}{\sqrt{\epsilon}}} + c_2 e^{-\frac{\eta \Theta}{\sqrt{\epsilon}}} = 1 - 1 = 0.$$

This gives  $c_1 = 0$  (or the exponential would go to infinity due to the limit of  $\frac{\Theta}{\delta}$ ) and we get  $c_2 = -1$ . The uniform approximation is then given by

$$u_u(x) = \frac{1}{2 - x^2} + 1 - e^{-\frac{1 - x}{\sqrt{\epsilon}}} - \lim_{\epsilon \downarrow 0} u_O(1 - \eta \Theta) = \frac{1}{2 - x^2} - e^{-\frac{1 - x}{\sqrt{\epsilon}}}.$$