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We are going to study the boundary problem
(1) ey’ +(1+a)y' +y=0, y(0)=0, y(1)=1

where 0 < ¢ < 1. Let us introduce the notation y = yo + ey + O(e?) for the outer
approximation and Y = Y + Y] + O(£?) for the inner approximation. From the
exercise we know that the boundary layer lies at z = 0. Let us call the uniform
approximation y“.
To find the outer approximation, we plug in the series expansion of y into (1) and
find

(L+2)yo +yo +elyg + (L +2)y; +y1] = O(?).

We can fix yo using the equation y((1 + x) + yo = 0. This equation has general
solution of the form yp = C/(1 4+ x). If we use the initial condition y(0) = 0 for
fixing C, we get yo = 0. With further computations we will see that this solution
can not be used as the inner solution. Since the boundary layer lies at x = 0, we
are going to use the initial condition at x = 1 for the outer approximation. Thus,
asking that yo(1) = 1, we get C' = 2. The leading order for the outer approximation

1S
2

T 1t
To find the inner approximation Y, we scale x such that the new variable varies
between 0 and 1 close to the boundary layer. Let us set { = /¢ and obtain, using

(1),

y(z) ~ yo(x)

Y dy dy
2 — + — —4+Y)=0.
Let us plug in the series expansion for Y into (2) and gather together the terms
having same order. We get the following equation

Yo + Yo 4 (Y1 + Y1 + €Y + Yo) = O(e?),

where Y means derivation with respect to £&. We assume that this approximation is
good near £ = 0. We use the initial condition Y (0) = 0, that gives us Yy(0) = 0.
The initial term in the expansion of Y can be derived from the equation Yy + Yy = 0.
Using the initial condition Yy(0) = 0, we get Yy = K (1 —e~).
We have to match the inner and outer approximation. This can be done for Yy and
1o by setting

lim Y (¢) = lim y(z),

{—o0 z—0
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which gives K = 2. The uniform approximation can be found summing together
inner and outer and subtracting from their sum the common terms. This returns

y'(z) = y(z) + Y(z/e) =2 = — 90 7/e,

1+

If we had used the initial condition y(0) = 0 instead of y(1) = 1, we would have
found y = 0 and K = 0 = Y = 0. The uniform approximation would have been
y* = 0, which is clearly wrong. It is therefore right to use the initial condition

y(1) =1.

We begin by finding the outer solution. The boundary layer is given to be at x = 0.
We neglect the e’ term and obtain the boundary value problem for the outer solution

vo+yp =0, yl)=-.

1

The solution is yo(z) = ;17-

then .
%Y” Y Y =0, Y(0)

We choose § = € and multiply the equation by e. This gives

To find the inner solution we scale z = 6§ and let Y (£) = y(x). The chain rule gives
_1
=

Y'+Y +eY?=0.

The leading order solution can be found by solving Y} + Y/ = 0, Y;(0) = 1. The

solution is Y7(€) = C1 + Coe™¢ with Cy + Cy = i. We use the matching requirement
to find C; and C5. To that end let ©(e) be such that

: _ . O(e) _
lelf(r)l ©(e) =0, l:fél 50 00

The matching requirement can be formulated

liz yo (76(€)) = lim V7 (”6(6)) ,

for all n > 0. This gives
Ci1+ Coe™ =1,

and thus Cy =1,Cs = —%. The uniform approximation is then given by

yu(r) = yo(x) + Y7 (%) - 138 Yo (nO(e))
1 3 xz

= — = €

c+1  4°

(a) We use the time scale T = 1/w, and A as scale for ¢*. By comparing the

equations
dn*

dt*

= an® —wn’,
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and

(3) e¢c=n-—c.,

we see that we have to choose the scale for n* to be

)
4 Ny = —A,
(4) 3
and by using this we get equation 3. The parameters are
o Q0 _ 1/w ’
w  1/ag
w 1/
5 = = = —,
5) T 1/w

Both are ratios between time scales, and it is given that x is larger than 1,
while 0 < ¢ < 1. Hence, this is a singular perturbed system. The equilibrium
points are:

(nlacl) = (070)7
(6) (ng,c0) =(k—1,k— 1)

Linearisation around (0,0) gives

(7) R

€ 15
With eigenvalues A\ =k —1 > 0 and Ay = —1/¢ < 0, is it a saddle point. It
was not asked for to analyze the other equilibrium point.

Equation 3 is a singular perturbed system because € < 1. For the outer solution
to leading order, ng (t) and ¢ (t), we find first that ng (t) = co (t), and this gives

dng K
— = -1 .
(8) dt (1 + no > 10

The point (k — 1,k — 1) is still an equilibrium, and by a sign analysis we see
that (k — 1) is a stable equilibrium for (8) independent on where we choose to
start for 0 < ng (0) < oo. It is also possible to show that the point is locally
stable by differentiate the right side of the equation.

It is also possible to partly solve 8 because we can write it as
1+ ng
9)

(k—1—=mngp)no
oritk>1

(10) (1 - H) dng =

ng no—k-+1 k—1

dno = dt,

Thus the solution is implicitly given by

o (t—to)/ (k1)
11 = =e" 0 .
(1) o~ (w— 1))

Because e! — oo for t — 0o, we always have ng (t) vl 1 (if no (0) # 0).
— 00

The outer path of the solution to leading order is the straight line {(ng, cg) ; ng = co}-
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(c) We try to use the time-scale ¢, i.e. 7 = t/e for the beginning of the movement.
This gives us the following equations, where we use N (7) and C (7) to separate
the inner solution from the others:

dN K
ki ~1)N
dr €<1+C > :

dCc
12 —=N-C.
(12) dr
To leading order we get
dNy
- - = 0
dr ’
d
4 _ No — Cy,
dr

We start in the point (n (0),c¢(0)), thus the inner solution

(13) Co (1) = [c(0) =n(0)]e™" +n(0).

For the outer solution we don’t have a starting point, but we know from (b)
that ng (t) = ¢o (t), hence we may assume

no (0) = A,
(14) co (0) = A.

”Matching requirement” is in the simplest from

lim C() (T) = %gr(l) Co (t) y

T—00
(15) Jim No (7) = limno (1),

and luckily A = n (0) satisfies both of these requirements. Uniform solution is
generally given as

(16) Uy (t) =ug (t) + Uy (1) — lim Uy (7).

T—00

Thus we have

(17) cu () = no () + [¢(0) = n (0)] e™"/°.
Generally
(18) ¢= % (n—c)

gives that ¢ is large and positive if n — ¢ > O (¢), and large and negative if
n—c <K O(—¢). Further we see that n < 0ifc>k—1,andn>0if c < Kk —1.
Together with the results from (b), this gives a good quantitative impression of
the paths, which in Figure 1 is computed numerically. It is obvious that as long
as we don’t start with n (0) = 0 we will for ¢ — oo end up in the equilibrium
point (k — 1,k — 1).
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Epsilon = 0.3, Kappa = 1.5
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Figure 1: Paths for the system when € = 0.3 and x = 1.5. The stable equilibrium point is
in(k—1,k—1).
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We are given the equation

dec 0%

(19) 5% o

+ce(l—¢), t>0, zeR.

a) We linearize the equation around ¢ = 0. It is more transparent to write the
equation as
¢t = Czz + q(0).

The only term we need to linearize is ¢, since the other terms are already linear:
q(c) # q(0) + ¢'(0)c=0+1-c=c,

and hence the linearized equation is

(20) Ct = Cgq + C,

where we have set ¢ := ¢p(x,t). We thus have k = 1.

b) We can solve the linearized equation in many ways, but following the hint, we
want to transform it to the heat equation. We do this using an integrating
factor. Let ¢ = e *¢ and note that

0

aé = e_kt(ct —ke) = e Rt = By

This can be solved by convolution with the fundamental solution cp:
oo
C=Co*cp = / &(y,0)cp(z —y, t)dy.
—00
We then get
o0
cu(o.t) = Helrt) = [~ eolyer(s — y.t)dy
—00

where we note that &(y,0) = e %¢(y, 0) = co(y).
Inserting the given solution of the fundamental solution cr, we get

1 _@w?

e~ 4t dy.
At Y

mwbwjfmw

c) Using the hint, we calculate
o0
e = 0] < ekt/ lco(y)ler (2 — y, t)dy < e max|co(x)| - 1 = e max|eo(2) - 0].
—00 zeR zeR

d) The equilibrium points of (19) are its constant solutions, and if ¢ = cp is a
constant solution of (19), then (cg); = (¢g)zx = 0 and ¢(cg) = cp(cg —1) = 0.
The solutions/equilibrium points are therefore ¢y = 0 and cp = 1.

To study the stability of the equilibrium points cg, we check whether solutions
of the equation linearized arond cg that start near cg remain near for all times.
To do that, let

c(z,t) = cp + é(z,t)
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and note that if ¢ is not so big, then

G = Cuz + qlcp + &) = Cpp + q(cr) + ¢ (cr)e.
Note that ¢(cg) = 0 and let ¢ be the solution of the linearized equation
(21) ¢ = coz + ¢ (cB)e.

This linearized equation only has the equilibrium point é = 0 (since ¢’ # 0).
By definition we say that cg is a stable(/unstable) equilibrium point of the
original non-linear equation according to linear stability analysis if ¢ = 0 is a
stable(/unstable) equilibrium point of the linearized equation 21.

We solve equation (21) and ¢(z,0) = ¢o(x) as in part b), this time with using
the integrating factor e~ 7 (ce)t,

é(x,t) = eql(Ce)t/Rco(y)cF(:n —y,t)dy.

Note that if |co(z) — 0] = |co| < 0, then

|é(x, 1) — 0] < max |co(x) — 0] < e ()t
z€R

Hence it follows that ¢ = 0 is a stable equilibrium point if ¢’(c.) < 0 since then
small perturbations remain small for all times. On the other hand, if ¢/(c.) > 0,
then ¢ = 0 is not stable any more since we can find small perturbations that
blows up in time. Take e.g. ¢g = § and check that

&z, t) = de? (I - oo as t — 00.

We compute ¢’ and find that ¢’(0) = 1 > 0 and ¢/(1) = —1 < 0. From the
discussion above we can then conclude according to linear stability analysis
that ¢g = 0 is unstable while c¢g = 1 is stable.
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