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Solutions to exercise set 4

1 We are going to study the boundary problem

(1) εy′′ + (1 + x)y′ + y = 0, y(0) = 0, y(1) = 1

where 0 < ε� 1. Let us introduce the notation y = y0 + εy1 +O(ε2) for the outer
approximation and Y = Y0 + εY1 + O(ε2) for the inner approximation. From the
exercise we know that the boundary layer lies at x = 0. Let us call the uniform
approximation yu.

To find the outer approximation, we plug in the series expansion of y into (1) and
find

(1 + x)y′0 + y0 + ε[y′′0 + (1 + x)y′1 + y1] = O(ε2).

We can fix y0 using the equation y′0(1 + x) + y0 = 0. This equation has general
solution of the form y0 = C/(1 + x). If we use the initial condition y(0) = 0 for
fixing C, we get y0 ≡ 0. With further computations we will see that this solution
can not be used as the inner solution. Since the boundary layer lies at x = 0, we
are going to use the initial condition at x = 1 for the outer approximation. Thus,
asking that y0(1) = 1, we get C = 2. The leading order for the outer approximation
is

y(x) ≈ y0(x) =
2

1 + x
.

To find the inner approximation Y , we scale x such that the new variable varies
between 0 and 1 close to the boundary layer. Let us set ξ = x/ε and obtain, using
(1),

(2)
d2Y

dξ2
+
dY

dξ
+ ε(ξ

dY

dξ
+ Y ) = 0.

Let us plug in the series expansion for Y into (2) and gather together the terms
having same order. We get the following equation

Ÿ0 + Ẏ0 + ε(Ÿ1 + Y1 + ξẎ0 + Y0) = O(ε2),

where Ẏ means derivation with respect to ξ. We assume that this approximation is
good near ξ = 0. We use the initial condition Y (0) = 0, that gives us Y0(0) = 0.
The initial term in the expansion of Y can be derived from the equation Ÿ0 + Ẏ0 = 0.
Using the initial condition Y0(0) = 0, we get Y0 = K(1− e−ξ).

We have to match the inner and outer approximation. This can be done for Y0 and
y0 by setting

lim
ξ→∞

Y (ξ) = lim
x→0

y(x),
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which gives K = 2. The uniform approximation can be found summing together
inner and outer and subtracting from their sum the common terms. This returns

yu(x) = y(x) + Y (x/ε)− 2 =
2

1 + x
− 2e−x/ε.

If we had used the initial condition y(0) = 0 instead of y(1) = 1, we would have
found y = 0 and K = 0 ⇒ Y = 0. The uniform approximation would have been
yu = 0, which is clearly wrong. It is therefore right to use the initial condition
y(1) = 1.

2 We begin by finding the outer solution. The boundary layer is given to be at x = 0.
We neglect the εy′′ term and obtain the boundary value problem for the outer solution

y′O + y2O = 0, y(1) =
1

2
.

The solution is yO(x) = 1
x+1 .

To find the inner solution we scale x = δξ and let Y (ξ) = y(x). The chain rule gives
then

ε

δ2
Y ′′ +

1

δ
Y ′ + Y 2 = 0, Y (0) =

1

4
.

We choose δ = ε and multiply the equation by ε. This gives

Y ′′ + Y ′ + εY 2 = 0.

The leading order solution can be found by solving Y ′′I + Y ′I = 0, YI(0) = 1
4 . The

solution is YI(ξ) = C1 +C2e
−ξ with C1 +C2 = 1

4 . We use the matching requirement
to find C1 and C2. To that end let Θ(ε) be such that

lim
ε↓0

Θ(ε) = 0, lim
ε↓0

Θ(ε)

δ(ε)
=∞.

The matching requirement can be formulated

lim
ε↓0

yO (ηΘ(ε)) = lim
ε↓0

YI

(
ηΘ(ε)

δ(ε)

)
,

for all η > 0. This gives
C1 + C2e

−∞ = 1,

and thus C1 = 1, C2 = −3
4 . The uniform approximation is then given by

yu(x) = yO(x) + YI

(x
δ

)
− lim

ε↓0
yO (ηΘ(ε))

=
1

x+ 1
− 3

4
e−

x
ε .

3 (a) We use the time scale T = 1/ω, and A as scale for c∗. By comparing the
equations

dn∗

dt∗
= αn∗ − ωn∗,
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and

ṅ =

(
κ

1 + c
− 1

)
n,

εċ = n− c.,(3)

we see that we have to choose the scale for n∗ to be

(4) N0 =
δ

β
A,

and by using this we get equation 3. The parameters are

κ =
α0

ω
=

1/ω

1/α0
,

ε =
ω

δ
=

1/δ

1/ω
.(5)

Both are ratios between time scales, and it is given that κ is larger than 1,
while 0 < ε � 1. Hence, this is a singular perturbed system. The equilibrium
points are:

(n1, c1) = (0, 0) ,

(n2, c2) = (κ− 1, κ− 1)(6)

Linearisation around (0, 0) gives

(7)

[
κ− 1 0

1
ε −1

ε

]
.

With eigenvalues λ1 = κ − 1 > 0 and λ2 = −1/ε < 0, is it a saddle point. It
was not asked for to analyze the other equilibrium point.

(b) Equation 3 is a singular perturbed system because ε� 1. For the outer solution
to leading order, n0 (t) and c0 (t), we find first that n0 (t) = c0 (t), and this gives

(8)
dn0
dt

=

(
κ

1 + n0
− 1

)
n0.

The point (κ− 1, κ− 1) is still an equilibrium, and by a sign analysis we see
that (κ− 1) is a stable equilibrium for (8) independent on where we choose to
start for 0 < n0 (0) < ∞. It is also possible to show that the point is locally
stable by differentiate the right side of the equation.

It is also possible to partly solve 8 because we can write it as

(9)
1 + n0

(κ− 1− n0)n0
dn0 = dt,

or if κ > 1

(10)

(
1

n0
− κ

n0 − κ+ 1

)
dn0 =

dt

κ− 1
.

Thus the solution is implicitly given by

(11)
n0

|n0 − (κ− 1)|κ
= e(t−t0)/(κ−1).

Because et →∞ for t→∞, we always have n0 (t) −→
t→∞

κ− 1 (if n0 (0) 6= 0).

The outer path of the solution to leading order is the straight line {(n0, c0) ;n0 = c0}.
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(c) We try to use the time-scale ε, i.e. τ = t/ε for the beginning of the movement.
This gives us the following equations, where we use N (τ) and C (τ) to separate
the inner solution from the others:

dN

dτ
= ε

(
κ

1 + C
− 1

)
N,

dC

dτ
= N − C.(12)

To leading order we get

dN0

dτ
= 0,

dC0

dτ
= N0 − C0,

We start in the point (n (0) , c (0)), thus the inner solution

N0 (τ) = n (0) ,

C0 (τ) = [c (0)− n (0)] e−τ + n (0) .(13)

For the outer solution we don’t have a starting point, but we know from (b)
that n0 (t) = c0 (t), hence we may assume

n0 (0) = A,

c0 (0) = A.(14)

”Matching requirement” is in the simplest from

lim
τ→∞

C0 (τ) = lim
t→0

c0 (t) ,

lim
τ→∞

N0 (τ) = lim
t→0

n0 (t) ,(15)

and luckily A = n (0) satisfies both of these requirements. Uniform solution is
generally given as

(16) uu (t) = u0 (t) + U0 (τ)− lim
τ→∞

U0 (τ) .

Thus we have

nu (t) = n0 (t) ,

cu (t) = n0 (t) + [c (0)− n (0)] e−t/ε.(17)

Generally

(18) ċ =
1

ε
(n− c)

gives that ċ is large and positive if n − c � O (ε), and large and negative if
n− c� O (−ε). Further we see that ṅ < 0 if c > κ− 1, and ṅ > 0 if c < κ− 1.
Together with the results from (b), this gives a good quantitative impression of
the paths, which in Figure 1 is computed numerically. It is obvious that as long
as we don’t start with n (0) = 0 we will for t → ∞ end up in the equilibrium
point (κ− 1, κ− 1).
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Figure 1: Paths for the system when ε = 0.3 and κ = 1.5. The stable equilibrium point is
in (κ− 1, κ− 1).
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4 We are given the equation

∂c

∂t
=
∂2c

∂x2
+ c(1− c), t > 0, x ∈ R.(19)

a) We linearize the equation around c = 0. It is more transparent to write the
equation as

ct = cxx + q(c).

The only term we need to linearize is q, since the other terms are already linear:

q(c) ≈ q(0) + q′(0)c = 0 + 1 · c = c,

and hence the linearized equation is

(20) ct = cxx + c,

where we have set c := cL(x, t). We thus have k = 1.

b) We can solve the linearized equation in many ways, but following the hint, we
want to transform it to the heat equation. We do this using an integrating
factor. Let c̄ = e−ktc and note that

∂

∂t
c̄ = e−kt(ct − kc) = e−ktcxx = c̄xx.

This can be solved by convolution with the fundamental solution cF :

c̄ = c̄0 ∗ cF =

∫ ∞
−∞

c̄(y, 0)cF (x− y, t)dy.

We then get

cL(x, t) = ektc̄(x, t) = ekt
∫ ∞
−∞

c0(y)cF (x− y, t)dy,

where we note that c̄(y, 0) = e−0c(y, 0) = c0(y).

Inserting the given solution of the fundamental solution cF , we get

cL(x, t) = ekt
∫ ∞
−∞

c0(y)
1√
4πt

e−
(x−y)2

4t dy.

c) Using the hint, we calculate

|cL − 0| ≤ ekt
∫ ∞
−∞
|c0(y)|cF (x− y, t)dy ≤ ekt max

x∈R
|c0(x)| · 1 = ekt max

x∈R
|c0(x)− 0|.

d) The equilibrium points of (19) are its constant solutions, and if c = cE is a
constant solution of (19), then (cE)t = (cE)xx = 0 and q(cE) = cE(cE − 1) = 0.
The solutions/equilibrium points are therefore cE = 0 and cE = 1.

To study the stability of the equilibrium points cE , we check whether solutions
of the equation linearized arond cE that start near cE remain near for all times.
To do that, let

c(x, t) = cE + c̃(x, t)
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and note that if c̃ is not so big, then

c̃t = c̃xx + q(cE + c̃) ≈ c̃xx + q(cE) + q′(cE)c̃.

Note that q(cE) = 0 and let ĉ be the solution of the linearized equation

(21) ct = cxx + q′(cE)c.

This linearized equation only has the equilibrium point ĉ = 0 (since q′ 6= 0).
By definition we say that cE is a stable(/unstable) equilibrium point of the
original non-linear equation according to linear stability analysis if ĉ = 0 is a
stable(/unstable) equilibrium point of the linearized equation 21.

We solve equation (21) and c(x, 0) = c0(x) as in part b), this time with using
the integrating factor e−q

′(ce)t:

ĉ(x, t) = eq
′(ce)t

∫
R
c0(y)cF (x− y, t)dy.

Note that if |c0(x)− 0| = |c0| < δ, then

|ĉ(x, t)− 0| ≤ max
x∈R
|c0(x)− 0| < δeq

′(ce)t.

Hence it follows that ĉ = 0 is a stable equilibrium point if q′(ce) ≤ 0 since then
small perturbations remain small for all times. On the other hand, if q′(ce) > 0,
then ĉ = 0 is not stable any more since we can find small perturbations that
blows up in time. Take e.g. c0 = δ and check that

ĉ(x, t) = δeq
′(ce)t →∞ as t→∞.

We compute q′ and find that q′(0) = 1 > 0 and q′(1) = −1 < 0. From the
discussion above we can then conclude according to linear stability analysis
that cE = 0 is unstable while cE = 1 is stable.
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