1 We are going to study the boundary problem

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+(1+x) y^{\prime}+y=0, \quad y(0)=0, \quad y(1)=1 \tag{1}
\end{equation*}
$$

where $0<\varepsilon \ll 1$. Let us introduce the notation $y=y_{0}+\varepsilon y_{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ for the outer approximation and $Y=Y_{0}+\varepsilon Y_{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ for the inner approximation. From the exercise we know that the boundary layer lies at $x=0$. Let us call the uniform approximation $y^{u}$.
To find the outer approximation, we plug in the series expansion of $y$ into (1) and find

$$
(1+x) y_{0}^{\prime}+y_{0}+\varepsilon\left[y_{0}^{\prime \prime}+(1+x) y_{1}^{\prime}+y_{1}\right]=\mathcal{O}\left(\varepsilon^{2}\right) .
$$

We can fix $y_{0}$ using the equation $y_{0}^{\prime}(1+x)+y_{0}=0$. This equation has general solution of the form $y_{0}=C /(1+x)$. If we use the initial condition $y(0)=0$ for fixing $C$, we get $y_{0} \equiv 0$. With further computations we will see that this solution can not be used as the inner solution. Since the boundary layer lies at $x=0$, we are going to use the initial condition at $x=1$ for the outer approximation. Thus, asking that $y_{0}(1)=1$, we get $C=2$. The leading order for the outer approximation is

$$
y(x) \approx y_{0}(x)=\frac{2}{1+x} .
$$

To find the inner approximation $Y$, we scale $x$ such that the new variable varies between 0 and 1 close to the boundary layer. Let us set $\xi=x / \varepsilon$ and obtain, using (1),

$$
\begin{equation*}
\frac{d^{2} Y}{d \xi^{2}}+\frac{d Y}{d \xi}+\varepsilon\left(\xi \frac{d Y}{d \xi}+Y\right)=0 \tag{2}
\end{equation*}
$$

Let us plug in the series expansion for $Y$ into (2) and gather together the terms having same order. We get the following equation

$$
\ddot{Y}_{0}+\dot{Y}_{0}+\varepsilon\left(\ddot{Y}_{1}+Y_{1}+\xi \dot{Y}_{0}+Y_{0}\right)=\mathcal{O}\left(\varepsilon^{2}\right)
$$

where $\dot{Y}$ means derivation with respect to $\xi$. We assume that this approximation is good near $\xi=0$. We use the initial condition $Y(0)=0$, that gives us $Y_{0}(0)=0$. The initial term in the expansion of $Y$ can be derived from the equation $\ddot{Y}_{0}+\dot{Y}_{0}=0$. Using the initial condition $Y_{0}(0)=0$, we get $Y_{0}=K\left(1-\mathrm{e}^{-\xi}\right)$.
We have to match the inner and outer approximation. This can be done for $Y_{0}$ and $y_{0}$ by setting

$$
\lim _{\xi \rightarrow \infty} Y(\xi)=\lim _{x \rightarrow 0} y(x),
$$

which gives $K=2$. The uniform approximation can be found summing together inner and outer and subtracting from their sum the common terms. This returns

$$
y^{u}(x)=y(x)+Y(x / \varepsilon)-2=\frac{2}{1+x}-2 \mathrm{e}^{-x / \varepsilon} .
$$

If we had used the initial condition $y(0)=0$ instead of $y(1)=1$, we would have found $y=0$ and $K=0 \Rightarrow Y=0$. The uniform approximation would have been $y^{u}=0$, which is clearly wrong. It is therefore right to use the initial condition $y(1)=1$.

2 We begin by finding the outer solution. The boundary layer is given to be at $x=0$. We neglect the $\epsilon y^{\prime \prime}$ term and obtain the boundary value problem for the outer solution

$$
y_{O}^{\prime}+y_{O}^{2}=0, \quad y(1)=\frac{1}{2} .
$$

The solution is $y_{O}(x)=\frac{1}{x+1}$.
To find the inner solution we scale $x=\delta \xi$ and let $Y(\xi)=y(x)$. The chain rule gives then

$$
\frac{\epsilon}{\delta^{2}} Y^{\prime \prime}+\frac{1}{\delta} Y^{\prime}+Y^{2}=0, \quad Y(0)=\frac{1}{4}
$$

We choose $\delta=\epsilon$ and multiply the equation by $\epsilon$. This gives

$$
Y^{\prime \prime}+Y^{\prime}+\epsilon Y^{2}=0 .
$$

The leading order solution can be found by solving $Y_{I}^{\prime \prime}+Y_{I}^{\prime}=0, Y_{I}(0)=\frac{1}{4}$. The solution is $Y_{I}(\xi)=C_{1}+C_{2} e^{-\xi}$ with $C_{1}+C_{2}=\frac{1}{4}$. We use the matching requirement to find $C_{1}$ and $C_{2}$. To that end let $\Theta(\epsilon)$ be such that

$$
\lim _{\epsilon \downarrow 0} \Theta(\epsilon)=0, \quad \lim _{\epsilon \downarrow 0} \frac{\Theta(\epsilon)}{\delta(\epsilon)}=\infty .
$$

The matching requirement can be formulated

$$
\lim _{\epsilon \downarrow 0} y_{O}(\eta \Theta(\epsilon))=\lim _{\epsilon \downarrow 0} Y_{I}\left(\frac{\eta \Theta(\epsilon)}{\delta(\epsilon)}\right),
$$

for all $\eta>0$. This gives

$$
C_{1}+C_{2} e^{-\infty}=1,
$$

and thus $C_{1}=1, C_{2}=-\frac{3}{4}$. The uniform approximation is then given by

$$
\begin{aligned}
y_{u}(x) & =y_{O}(x)+Y_{I}\left(\frac{x}{\delta}\right)-\lim _{\epsilon \downarrow 0} y_{O}(\eta \Theta(\epsilon)) \\
& =\frac{1}{x+1}-\frac{3}{4} e^{-\frac{x}{\epsilon}} .
\end{aligned}
$$

3 (a) We use the time scale $T=1 / \omega$, and $A$ as scale for $c^{*}$. By comparing the equations

$$
\frac{d n^{*}}{d t^{*}}=\alpha n^{*}-\omega n^{*},
$$

and

$$
\begin{align*}
\dot{n} & =\left(\frac{\kappa}{1+c}-1\right) n \\
\varepsilon \dot{c} & =n-c . \tag{3}
\end{align*}
$$

we see that we have to choose the scale for $n^{*}$ to be

$$
\begin{equation*}
N_{0}=\frac{\delta}{\beta} A \tag{4}
\end{equation*}
$$

and by using this we get equation 3 . The parameters are

$$
\begin{align*}
\kappa & =\frac{\alpha_{0}}{\omega}=\frac{1 / \omega}{1 / \alpha_{0}} \\
\varepsilon & =\frac{\omega}{\delta}=\frac{1 / \delta}{1 / \omega} \tag{5}
\end{align*}
$$

Both are ratios between time scales, and it is given that $\kappa$ is larger than 1 , while $0<\varepsilon \ll 1$. Hence, this is a singular perturbed system. The equilibrium points are:

$$
\begin{align*}
& \left(n_{1}, c_{1}\right)=(0,0) \\
& \left(n_{2}, c_{2}\right)=(\kappa-1, \kappa-1) \tag{6}
\end{align*}
$$

Linearisation around $(0,0)$ gives

$$
\left[\begin{array}{cc}
\kappa-1 & 0  \tag{7}\\
\frac{1}{\varepsilon} & -\frac{1}{\varepsilon}
\end{array}\right]
$$

With eigenvalues $\lambda_{1}=\kappa-1>0$ and $\lambda_{2}=-1 / \varepsilon<0$, is it a saddle point. It was not asked for to analyze the other equilibrium point.
(b) Equation 3 is a singular perturbed system because $\varepsilon \ll 1$. For the outer solution to leading order, $n_{0}(t)$ and $c_{0}(t)$, we find first that $n_{0}(t)=c_{0}(t)$, and this gives

$$
\begin{equation*}
\frac{d n_{0}}{d t}=\left(\frac{\kappa}{1+n_{0}}-1\right) n_{0} \tag{8}
\end{equation*}
$$

The point $(\kappa-1, \kappa-1)$ is still an equilibrium, and by a sign analysis we see that $(\kappa-1)$ is a stable equilibrium for (8) independent on where we choose to start for $0<n_{0}(0)<\infty$. It is also possible to show that the point is locally stable by differentiate the right side of the equation.
It is also possible to partly solve 8 because we can write it as

$$
\begin{equation*}
\frac{1+n_{0}}{\left(\kappa-1-n_{0}\right) n_{0}} d n_{0}=d t \tag{9}
\end{equation*}
$$

or if $\kappa>1$

$$
\begin{equation*}
\left(\frac{1}{n_{0}}-\frac{\kappa}{n_{0}-\kappa+1}\right) d n_{0}=\frac{d t}{\kappa-1} \tag{10}
\end{equation*}
$$

Thus the solution is implicitly given by

$$
\begin{equation*}
\frac{n_{0}}{\left|n_{0}-(\kappa-1)\right|^{\kappa}}=e^{\left(t-t_{0}\right) /(\kappa-1)} \tag{11}
\end{equation*}
$$

Because $e^{t} \rightarrow \infty$ for $t \rightarrow \infty$, we always have $n_{0}(t) \underset{t \rightarrow \infty}{\longrightarrow} \kappa-1$ (if $\left.n_{0}(0) \neq 0\right)$.
The outer path of the solution to leading order is the straight line $\left\{\left(n_{0}, c_{0}\right) ; n_{0}=c_{0}\right\}$.
(c) We try to use the time-scale $\varepsilon$, i.e. $\tau=t / \varepsilon$ for the beginning of the movement. This gives us the following equations, where we use $N(\tau)$ and $C(\tau)$ to separate the inner solution from the others:

$$
\begin{align*}
\frac{d N}{d \tau} & =\varepsilon\left(\frac{\kappa}{1+C}-1\right) N \\
\frac{d C}{d \tau} & =N-C \tag{12}
\end{align*}
$$

To leading order we get

$$
\begin{aligned}
& \frac{d N_{0}}{d \tau}=0 \\
& \frac{d C_{0}}{d \tau}=N_{0}-C_{0}
\end{aligned}
$$

We start in the point $(n(0), c(0))$, thus the inner solution

$$
\begin{align*}
& N_{0}(\tau)=n(0), \\
& C_{0}(\tau)=[c(0)-n(0)] e^{-\tau}+n(0) . \tag{13}
\end{align*}
$$

For the outer solution we don't have a starting point, but we know from (b) that $n_{0}(t)=c_{0}(t)$, hence we may assume

$$
\begin{align*}
n_{0}(0) & =A, \\
c_{0}(0) & =A . \tag{14}
\end{align*}
$$

"Matching requirement" is in the simplest from

$$
\begin{align*}
& \lim _{\tau \rightarrow \infty} C_{0}(\tau)=\lim _{t \rightarrow 0} c_{0}(t), \\
& \lim _{\tau \rightarrow \infty} N_{0}(\tau)=\lim _{t \rightarrow 0} n_{0}(t), \tag{15}
\end{align*}
$$

and luckily $A=n(0)$ satisfies both of these requirements. Uniform solution is generally given as

$$
\begin{equation*}
u_{u}(t)=u_{0}(t)+U_{0}(\tau)-\lim _{\tau \rightarrow \infty} U_{0}(\tau) \tag{16}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
n_{u}(t) & =n_{0}(t), \\
c_{u}(t) & =n_{0}(t)+[c(0)-n(0)] e^{-t / \varepsilon} . \tag{17}
\end{align*}
$$

Generally

$$
\begin{equation*}
\dot{c}=\frac{1}{\varepsilon}(n-c) \tag{18}
\end{equation*}
$$

gives that $\dot{c}$ is large and positive if $n-c \gg \mathcal{O}(\varepsilon)$, and large and negative if $n-c \ll \mathcal{O}(-\varepsilon)$. Further we see that $\dot{n}<0$ if $c>\kappa-1$, and $\dot{n}>0$ if $c<\kappa-1$. Together with the results from (b), this gives a good quantitative impression of the paths, which in Figure 1 is computed numerically. It is obvious that as long as we don't start with $n(0)=0$ we will for $t \rightarrow \infty$ end up in the equilibrium point ( $\kappa-1, \kappa-1$ ).


Figure 1: Paths for the system when $\varepsilon=0.3$ and $\kappa=1.5$. The stable equilibrium point is in $(\kappa-1, \kappa-1)$.

4 We are given the equation

$$
\begin{equation*}
\frac{\partial c}{\partial t}=\frac{\partial^{2} c}{\partial x^{2}}+c(1-c), \quad t>0, x \in \mathbb{R} \tag{19}
\end{equation*}
$$

a) We linearize the equation around $c=0$. It is more transparent to write the equation as

$$
c_{t}=c_{x x}+q(c) .
$$

The only term we need to linearize is $q$, since the other terms are already linear:

$$
q(c) \approx q(0)+q^{\prime}(0) c=0+1 \cdot c=c,
$$

and hence the linearized equation is

$$
\begin{equation*}
c_{t}=c_{x x}+c, \tag{20}
\end{equation*}
$$

where we have set $c:=c_{L}(x, t)$. We thus have $k=1$.
b) We can solve the linearized equation in many ways, but following the hint, we want to transform it to the heat equation. We do this using an integrating factor. Let $\bar{c}=e^{-k t} c$ and note that

$$
\frac{\partial}{\partial t} \bar{c}=e^{-k t}\left(c_{t}-k c\right)=e^{-k t} c_{x x}=\bar{c}_{x x}
$$

This can be solved by convolution with the fundamental solution $c_{F}$ :

$$
\bar{c}=\bar{c}_{0} * c_{F}=\int_{-\infty}^{\infty} \bar{c}(y, 0) c_{F}(x-y, t) \mathrm{d} y .
$$

We then get

$$
c_{L}(x, t)=\mathrm{e}^{k t} \bar{c}(x, t)=\mathrm{e}^{k t} \int_{-\infty}^{\infty} c_{0}(y) c_{F}(x-y, t) \mathrm{d} y,
$$

where we note that $\bar{c}(y, 0)=e^{-0} c(y, 0)=c_{0}(y)$.
Inserting the given solution of the fundamental solution $c_{F}$, we get

$$
c_{L}(x, t)=e^{k t} \int_{-\infty}^{\infty} c_{0}(y) \frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x-y)^{2}}{4 t}} d y .
$$

c) Using the hint, we calculate
$\left|c_{L}-0\right| \leq \mathrm{e}^{k t} \int_{-\infty}^{\infty}\left|c_{0}(y)\right| c_{F}(x-y, t) \mathrm{d} y \leq \mathrm{e}^{k t} \max _{x \in \mathrm{R}}\left|c_{0}(x)\right| \cdot 1=\mathrm{e}^{k t} \max _{x \in \mathrm{R}}\left|c_{0}(x)-0\right|$.
d) The equilibrium points of (19) are its constant solutions, and if $c=c_{E}$ is a constant solution of (19), then $\left(c_{E}\right)_{t}=\left(c_{E}\right)_{x x}=0$ and $q\left(c_{E}\right)=c_{E}\left(c_{E}-1\right)=0$. The solutions/equilibrium points are therefore $c_{E}=0$ and $c_{E}=1$.
To study the stability of the equilibrium points $c_{E}$, we check whether solutions of the equation linearized arond $c_{E}$ that start near $c_{E}$ remain near for all times. To do that, let

$$
c(x, t)=c_{E}+\tilde{c}(x, t)
$$

and note that if $\tilde{c}$ is not so big, then

$$
\tilde{c}_{t}=\tilde{c}_{x x}+q\left(c_{E}+\tilde{c}\right) \approx \tilde{c}_{x x}+q\left(c_{E}\right)+q^{\prime}\left(c_{E}\right) \tilde{c} .
$$

Note that $q\left(c_{E}\right)=0$ and let $\hat{c}$ be the solution of the linearized equation

$$
\begin{equation*}
c_{t}=c_{x x}+q^{\prime}\left(c_{E}\right) c . \tag{21}
\end{equation*}
$$

This linearized equation only has the equilibrium point $\hat{c}=0\left(\right.$ since $\left.q^{\prime} \neq 0\right)$. By definition we say that $c_{E}$ is a stable(/unstable) equilibrium point of the original non-linear equation according to linear stability analysis if $\hat{c}=0$ is a stable(/unstable) equilibrium point of the linearized equation 21.
We solve equation (21) and $c(x, 0)=c_{0}(x)$ as in part b ), this time with using the integrating factor $e^{-q^{\prime}\left(c_{e}\right) t}$ :

$$
\hat{c}(x, t)=e^{q^{\prime}\left(c_{e}\right) t} \int_{\mathbb{R}} c_{0}(y) c_{F}(x-y, t) d y .
$$

Note that if $\left|c_{0}(x)-0\right|=\left|c_{0}\right|<\delta$, then

$$
|\hat{c}(x, t)-0| \leq \max _{x \in \mathrm{R}}\left|c_{0}(x)-0\right|<\delta e^{q^{\prime}\left(c_{e}\right) t} .
$$

Hence it follows that $\hat{c}=0$ is a stable equilibrium point if $q^{\prime}\left(c_{e}\right) \leq 0$ since then small perturbations remain small for all times. On the other hand, if $q^{\prime}\left(c_{e}\right)>0$, then $\hat{c}=0$ is not stable any more since we can find small perturbations that blows up in time. Take e.g. $c_{0}=\delta$ and check that

$$
\hat{c}(x, t)=\delta e^{q^{\prime}\left(c_{e}\right) t} \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty .
$$

We compute $q^{\prime}$ and find that $q^{\prime}(0)=1>0$ and $q^{\prime}(1)=-1<0$. From the discussion above we can then conclude according to linear stability analysis that $c_{E}=0$ is unstable while $c_{E}=1$ is stable.

