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Solutions to exercise set 5

1 (a) The equilibrium points are given by

du

dt
= 0 ⇒


u0 = µ

u1 =
√
µ, µ ≥ 0

u2 = −√µ, µ ≥ 0

We have two bifurcation points, i.e. points where the solution curves intersect.
These points are given by µ = ±√µ, that is the two bifurcation points are
(0, 0), (1, 1). To say something about stability, we first calculate

f ′(u) = 3u2 − 2µu− µ

By plugging in the expression for the equilibrium solutions we get

f ′(u0) = µ(µ− 1)

f ′(u1) = 2µ(1−√µ)

f ′(u2) = 2µ(1 +
√
µ)

We see that u3 is always unstable, u2 is stable for µ > 1 and u1 is stable when
0 < µ < 1. We see that the stability changes at the bifurcation points. See
Figure 1 for the sketch of the bifurcation diagram.

(b) The equilibrium points are given by

du

dt
= 0 ⇒


u0 = 0

u1 = 9/µ, µ 6= 0

u2,3 = 1±
√
µ+ 1, µ ≥ −1

The branching diagram is showed in figure 2.

From the diagram we see that we have two bifurcation points, i.e. points where
the solution curves intersect. These points are given by

1−
√
µ+ 1 = 0

1 +
√
µ+ 1 = 9/µ

Hence the bifurcation points are (µ, u) = {(0, 0), (3, 3)}.
To say something about stability, we first calculate

f ′(u) = (9− µu)(µ+ 2u− u2)− µu(µ+ 2u− u2) + 2u(9− µu)(1− u)
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Figure 1: Bifurcation diagram 2.2 (a).

By plugging in the expression for the equilibrium solutions we get

f ′(u0) = 9µ

f ′(u1) = −9

(
µ+

18

µ
− 81

µ2

)
= − 9

µ2
(
µ3 + 18µ− 81

)
= − 9

µ2
(µ− 3)(µ2 + 3µ+ 27)

f ′(u2) = 2
(

1−
√
µ+ 1

) [
9− µ

(
1−

√
µ+ 1

)]√
µ+ 1

f ′(u3) = −2
(

1 +
√
µ+ 1

) [
9− µ

(
1 +

√
µ+ 1

)]√
µ+ 1.
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Figure 2: Branching diagram 2.2 (b).

By sketching a sign line for the expression on the right hand side we find that

u0 is

{
stable for µ < 0

unstable for µ > 0,

u1 is

{
stable for µ > 3

unstable for µ ∈ 〈−∞, 0〉 ∪ 〈0, 3〉,

u2 is

{
stable for µ > 0

unstable for µ ∈ 〈−1, 0〉,

u3 is

{
stable for µ ∈ 〈−1, 3〉
unstable for µ > 3.

We see from this that the stability changes in the bifurcation points.

2

(a) We find the equilibrium solution using

Q0 − σT 4 = 0,

In other words

T0 =
4

√
Q0

σ
= 287K.

Let us check that T0 is stable:

d

dt

(
Q0 − σT 4

C

)
= − 1

C
σ4T 3

0 < 0.
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Figure 3: The Figure illustrates the equilibrium solutions when Tn < Qa

4Q0
T0. Only the

solutions in the ends are stable.

Around T0 we can linearize the equation and write T = T0 + y. This gives us
ẏ =

(
− 1

Cσ4T 3
0

)
y. Using a perturbation like y (0) = y0, the solution becomes

y (t) = y0 exp

(
− 1

C
σ4T 3

0 t

)
.

We solve for t and find that

t = − C

σ4T 3
0

ln
(y(t)

y0

)
.

If we say that the deviation has died out when y(t)/y0 ≤ 10−5 (a relative estimate),
then the time it needs to die out is

t =
C

σ4T 3
0

5 = 5
6× 109days×K3

4 (287K)3
≈ 317days.

(OBS!! The answer depends on your definition of ”die out”.)

(b) An equilibrium solution Ts solves the equation

f (T ) = Q0 +Qa tanh

(
T − T0
Tn

)
− σT 4 = 0,

and stability can be decided by checking that f ′(Ts) is bigger or smaller than zero.
For the equilibrium temperature (a) (using the hint about tanh) we get

f ′(T0) =
Qa

Tn
− 4σT 3

0 =
Qa

Tn
− 4

T0
Q0 =

Qa

Tn

(
1− 4Q0Tn

T0Qa

)
.

Whenever Tn <
Qa

4Q0
T0, f

′(T0) > 0 and T0 is not stable. The situation is as in fig.
3.

What controls the climate changes on earth are the variations in Q0 that make the

quantity Q0 + Qa tanh
(
T−T0
Tn

)
bob up and down. Whenever Tn < Qa

4Q0
T0, is not

surprising that transitions between ”cold” and ”warm” periods verify abruptly.
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One can also think that σεT 4 varies whenever ε varies: that is, there is a connection
between ε and the first term in the expansion (ε is the emissivity which measures
the deviation from the ideal black body radiation corresponding to ε = 1).

Further investigations on this model, which was introduce in 1987 by Ghil and
Childress, are left to the interested reader.

3 We are given the equation

∂c

∂t
=
∂2c

∂x2
+ c(1− c), t > 0, x ∈ R.(1)

a) We linearize the equation around c = 0. It is more transparent to write the
equation as

ct = cxx + q(c).

The only term we need to linearize is q, since the other terms are already linear:

q(c) ≈ q(0) + q′(0)c = 0 + 1 · c = c,

and hence the linearized equation is

(2) ct = cxx + c,

where we have set c := cL(x, t). We thus have k = 1.

b) We can solve the linearized equation in many ways, but following the hint, we
want to transform it to the heat equation. We do this using an integrating
factor. Let c̄ = e−ktc and note that

∂

∂t
c̄ = e−kt(ct − kc) = e−ktcxx = c̄xx.

This can be solved by convolution with the fundamental solution cF :

c̄ = c̄0 ∗ cF =

∫ ∞
−∞

c̄(y, 0)cF (x− y, t)dy.

We then get

cL(x, t) = ektc̄(x, t) = ekt
∫ ∞
−∞

c0(y)cF (x− y, t)dy,

where we note that c̄(y, 0) = e−0c(y, 0) = c0(y).

Inserting the given solution of the fundamental solution cF , we get

cL(x, t) = ekt
∫ ∞
−∞

c0(y)
1√
4πt

e−
(x−y)2

4t dy.

c) Using the hint, we calculate

|cL − 0| ≤ ekt
∫ ∞
−∞
|c0(y)|cF (x− y, t)dy ≤ ekt max

x∈R
|c0(x)| · 1 = ekt max

x∈R
|c0(x)− 0|.
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d) The equilibrium points of (1) are its constant solutions, and if c = cE is a
constant solution of (1), then (cE)t = (cE)xx = 0 and q(cE) = cE(cE − 1) = 0.
The solutions/equilibrium points are therefore cE = 0 and cE = 1.

To study the stability of the equilibrium points cE , we check whether solutions
of the equation linearized arond cE that start near cE remain near for all times.
To do that, let

c(x, t) = cE + c̃(x, t)

and note that if c̃ is not so big, then

c̃t = c̃xx + q(cE + c̃) ≈ c̃xx + q(cE) + q′(cE)c̃.

Note that q(cE) = 0 and let ĉ be the solution of the linearized equation

(3) ct = cxx + q′(cE)c.

This linearized equation only has the equilibrium point ĉ = 0 (since q′ 6= 0).
By definition we say that cE is a stable(/unstable) equilibrium point of the
original non-linear equation according to linear stability analysis if ĉ = 0 is a
stable(/unstable) equilibrium point of the linearized equation 3.

We solve equation (3) and c(x, 0) = c0(x) as in part b), this time with using
the integrating factor e−q

′(ce)t:

ĉ(x, t) = eq
′(ce)t

∫
R
c0(y)cF (x− y, t)dy.

Note that if |c0(x)− 0| = |c0| < δ, then

|ĉ(x, t)− 0| ≤ max
x∈R
|c0(x)− 0| < δeq

′(ce)t.

Hence it follows that ĉ = 0 is a stable equilibrium point if q′(ce) ≤ 0 since then
small perturbations remain small for all times. On the other hand, if q′(ce) > 0,
then ĉ = 0 is not stable any more since we can find small perturbations that
blows up in time. Take e.g. c0 = δ and check that

ĉ(x, t) = δeq
′(ce)t →∞ as t→∞.

We compute q′ and find that q′(0) = 1 > 0 and q′(1) = −1 < 0. From the
discussion above we can then conclude according to linear stability analysis
that cE = 0 is unstable while cE = 1 is stable.
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