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Solutions to exercise set 6

1 (a) We consider the following model for the population (P ) of moose

dP

dt
= f(P ),(1)

f(P ) = kP

(
1− P

M

)(
P

m
− 1

)
(2)

for 0 < m < M . The equilibrium points are given by

(3) f(P ) = 0 ⇒ P1 = 0, P2 = m, P3 = M.

Their stability properties can be determined using the derivative

f ′(P ) = k

(
1− P

M

)(
P

m
− 1

)
− k

M
P

(
P

m
− 1

)
+
k

m
P

(
1− P

M

)
and we obtain

P1 = 0 : f ′(P1) = −k < 0 ⇒ stable

P2 = m : f ′(P2) = k
(

1− m

M

)
︸ ︷︷ ︸

>0

> 0 ⇒ unstable

P3 = M : f ′(P3) = −k
(
M

m
− 1

)
︸ ︷︷ ︸

>0

< 0 ⇒ stable

(It is even simpler to obtain the same from a sketch of the 3rd order polynomial
f (P )).

The situation is illustrated in figure 1. From the plot we see the main features
of the model. m is the minimum population of moose able to survive: a smaller
amount would die out. M is the biggest viable amount of moose: the popula-
tion cannot be bigger than M for a long time, reflecting, for example, limited
available resources.

(b) Let us consider a model where hunters (J) are also present:

dP

dt
= P (1− P )− J = F (P, J) ,

dJ

dt
= −J

2
+ JP = G (P, J) .

The singular (or equilibrium) points are given by{
F (P, J) = P (1− P )− J = 0

G (P, J) = J(P − 1/2) = 0
⇒

{
J = P (1− P ),

P (1− P )(P − 1/2) = 0,
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P=M

P=m

P

t

Figure 1: Sketch of solutions.

that is, (P0, J0) = {(0, 0), (1/2, 1/4), (1, 0)}. We shall use linear analysis to
determine their stability and start by computing the matrix A in the Taylor
expansion of the right hand side,(

F
G

)
(P0,J0)

=

(
0
0

)
+ (A)(P0,J0)

(
P − P0

J − J0

)
+H.O.T.

Thus,

A =

(
∂F/∂P ∂F/∂J
∂G/∂P ∂G/∂J

)
=

(
1− 2P −1
J −1

2 + P

)
For (0, 0) the matrix is

A =

(
1 −1
0 −1

2

)
,

which implies that λ1 = 1, λ2 = −1
2 and (0, 0) is a saddle-point.

For (1/2, 1/4) we obtain

A =

(
0 −1
1
4 0

)
⇒ λ1 = −1

2
i, λ2 =

1

2
i,

showing that (1/2, 1/4) is a center by the linear theory (But remember this is
not enough to deduce something about the stability of the non-linear system).
For (1, 0) we obtain that

A =

(
−1 0
0 1

2

)
⇒ λ1 = −1, λ2 =

1

2
.

Also (1, 0) is a saddle-point.

(c) We are now going to show that the solution of

(4) h (P, J) = J − 3P (1− P )/2 = 0

defines a trajectory for the dynamical system. This will be the case if ∇h and(
dP
dt ,

dJ
dt

)
are orthogonal. (The argument is as follows: The direction of the
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motion is defined by the velocity vector
(
dP
dt ,

dJ
dt

)
in all points. Moreover, the

solution of Eqn. 4 is a level curve for the surface z = h (P,Q), and the gradient
∇h at a point on the curve is always orthogonal to the level curve. Thus, if ∇h
and

(
dP
dt ,

dJ
dt

)
are orthogonal, a solution starting on the level curve can never

leave it). Now, ∇h:

∇h =

(
3P − 3

2
1

)
Then

∇h ·
(
Ṗ

Q̇

)
= (3P − 3

2
) · (P (1− P )− J) + 1 · J(−1

2
+ P )

= −3

2
(1− 2P )

(
−1

2
P (1− P )

)
+

3P (1− P )

2
(−1

2
+ P )

= 0.

The solution given by h = 0 is drawn in figure 2 as a thick black curve. Since the
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Figure 2: Plot of solutions.

solutions cannot cross (remember that our dynamical system returns a unique
solution for every starting point), every initial condition which is located inside
the area delimited by h (P, J) = 0 will give rise to a solution that stays inside the
same area for all times. From the equation describing the moose’s population
we observe that

dP

dt
< 0 for J > P (1− P ).

and, in particular,
dP

dt
< 0 for J >

3

2
P (1− P ).

Therefore, all the solutions outside the region given by h = 0 will die out. The
figure 2 is made by solving the dynamical system numerically.

(d) From the plot we observe that the solutions inside the area delimited by h = 0
appear to be periodic, but this is not sufficient as a mathematical proof. Let
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us therefore define new coordinates (x, y) as{
x = P − 1

2

y = J − 1
4 .

(so that (12 ,
1
4) lies in the new origin). With these coordinates, our system

becomes

dx

dt
= −x2 − y

dy

dt
= x

(
y +

1

4

)
.

There are several ways to argue from here. For a certain point (x, y), x 6= 0,
the derivative

dx

dy
=
−x2 − y
x
(
y + 1

4

)
satisfies

dx

dy
(x, y) = −dx

dy
(−x, y).

This means that the trajectories through the points (x, y) and (−x, y) are mir-
ror images of each other w.r.t. the y-axes. Such a symmetry would not be
possible in the case of spirals (what happens when x → 0?). Thus, the solu-
tions have to be periodic. Of course, the symmetry shows up clearly in figure
2, where the solutions are symmetric with respect to the line P = 1/2.

(e) Conclusions from our model:

• The hunters reduce the amount of animals.

•
{

P > 1/2 : It is actually interesting to hunt, J increases.
P < 1/2 : It is not so interesting to hunt, J decreases.

2 (a) A natural scale for S∗ is given by S∗ = M0S as S∗ ≤ M0. Let t∗ = Tt, and
assume that S∗ �M0 (early stage). Then we balance dS∗

dt∗ ∼ rS
∗(M0−S∗) and

get T = 1
rM0

. The scaled equation is then

dS

dt
= S(1− S)− λS,

where λ = α
rM0

. There are two stationary solutions, i.e. solutions S such that
dS
dt = 0, given by S1 = 0 and S2 = 1− λ. These make sense physically. If there
are no sick persons, it should continue this way. And if the infection rate is
very high the other stationary solution should be close to 1.

(b) The physically acceptable region is 0 ≤ S, I, S + I ≤ 1. The parameter λ
compares the rate people recover to the rate people get sick. In similar fashion,
the parameter µ tells us something about the ratio of the rate people get sick
and the rate people lose immunity. The obvious stationary point is (0, 0). The

Jacobi matrix at (0, 0) is given by

(
1− λ 0
λ −µ

)
, with eigenvalues 1 − λ,−µ.

Both λ and µ are nonnegative, and this gives that both eigenvalues are negative
for λ > 1. So (0, 0) is stable if λ > 1 and unstable else.
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(c) We solve

λS0 − µI0 = 0,

S0(1− I0 − S0)− λS0 = 0.

The above gives S0 = µ
λI0, and as we are looking for a solution other than (0, 0),

we can assume that S0 6= 0, and we can divide by S0. This gives 1−I0−S0−λ =
0, or

(5) S0 + I0 = 1− λ.

Inserting S0 = µ
λI0 in the system yields

I0 =
λ

λ+ µ
(1− λ),

S0 =
µ

λ+ µ
(1− λ).

Acceptable values for λ and µ are thus 0 < λ < 1 and 0 < µ <∞. For constant
λ the line is given by (5).

(d) The linearisation about (S0, I0) is found by defining the function F (S, I) =
(f(S, I), g(S, I)) to be the right hand side in the system of ODEs and finding
the Jacobian J(S0,I0)F at the point (S0, I0). The Jacobian matrix is

J(S0,I0)F =

( ∂f
∂S (S0, I0)

∂f
∂I (S0, I0)

∂g
∂S (S0, I0)

∂g
∂I (S0, I0)

)
=

(
1− λ− I0 − 2S0 −S0

λ −µ

)
We know that 1− λ = I0 + S0.

(6) J(S0,I0)F =

(
−S0 −S0
λ −µ

)
.

We compute the eigenvalues αi as usual,

α± =
−(µ+ S0)±

√
(µ+ S0)2 − 4(µ+ λ)S0

2
.

The real part of α is negative and the equilibrium is stable.

3 (a) When α = 0 equation (5) is the logistic equation for population growth with
growth rate r and carrying capacity K. The α-term is a harvest or death term.

Scales:

Since N0 > K, we see that
dN∗

dt∗
< 0 for t� 1, and hence maxN∗ = N0.

Take N∗ = N0N , t∗ = Tt, scale (1), and balance terms:

dN∗

dt∗
=
N0

T

dN

dt

(1)
= rN0N

(
1− N0

K
N

)
− αN0N

⇒ T =
1

r

(
1− N0

K

)
− α

∼ K

rN0

since α < r and N0
K � 1.

Scales: N∗ = N0N , t∗ = K
rN0

t.
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(b) System (6) models e.g. growth of 2 populations sharing limited resource. The
death-rates (α, β-terms) depend on the size of the competing population. When
α, β = 0, the populations experience logistic growth.

Equilibrium points, when β = 0

0 =
dx

dt
= f1(x, y) = x(1− x)− αxy ⇒ x = 0 or x = 1− αy

0 = ε
dx

dt
= f2(x, y) = y(1− y) ⇒ y = 0 or y = 1

Solutions = equilibrium points:

(x, y) = {(0, 0), (0, 1), (1, 0), (1− α, 1)}.

Stability:

Jacobian =


∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 =

[
1− 2x− αy −α

0 1− 2y

]
,

and the eigenvalues are λ1 = 1− 2x− αy, λ2 = 1− 2y. Hence

(0, 0) (0, 1) (1, 0) (1− α, 1)

λ1 1 1− α(> 0) −1 −(1− α)(< 0)
λ2 1 −1 1 −1

unstable unstable unstable stable
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