1 Use the method of characteristics to solve these initial value problems for $t>0$.
(a) $u_{t}+u_{x}=-u, \quad u(x, 0)=u_{0}(x)$
(b) $u_{t}+u_{x}=x, \quad u(x, 0)=u_{0}(x)$

2 (Exercise 7.2.2 p. 73 in Krogstad)
A groundwater reservoir R, consists of porous sandstone filled with water. The pores constitute a constant fraction Φ of the volume $(0<\Phi<1)$. The boundary to R, ∂R, is partially open so that water can flow in and out. Two wells are drilled in the reservoir.
(a) Set up a conservation law in the integral form of the water in the reservoir, where the flux $\mathbf{j}(\mathbf{x}, t)$ is not yet specified. What is the expression if the density of water ρ and all the properties of R are constant?

To find an expression for the flux of water $\left[\mathrm{m}^{3} /\left(\mathrm{m}^{2} \cdot \mathrm{~s}\right)\right]$, we assume that it only depends on viscosity $\mu[\mathrm{kg} /(\mathrm{m} \cdot \mathrm{s})]$, the fluid resistance in the rock (permeability K $\left[\mathrm{m}^{2}\right]$), and the pressure gradient ∇p. (Here and in the rest of the exercise, we assume that ρ is constant, so that we measure the water flow in volume.)
(b) Show by using dimensional analysis that

$$
\mathbf{j}=-k \frac{K}{\mu} \nabla p,
$$

where k is a dimensionless constant (the sign is physically reasonable).
To study how oil pollution in the reservoir will spread, we look at a rod-shaped rock sample, which in addition to water also contains oil. All the pores are either filled with water or oil, and a rock volume V will contain a volume $S_{o} \Phi V$ of oil and $S_{v} \Phi V$ of water, where $S_{o}+S_{v}=1$. We assume that water and oil have the same pressure and that the flux (in the x-direction along the rod) can be written in the form

$$
j_{i}=-k_{i}\left(S_{i}\right) \frac{K}{\mu_{i}} \frac{\partial p}{\partial x}, \quad i=o, v .
$$

(c) Specify the conservation laws for oil and water for the section of the rod between $x=a$ and $x=b$, and show that if the pressure gradient is

$$
q=j_{o}+j_{v}=\text { constant },
$$

then, when $S \equiv S_{v}$, we get the hyperbolic equation

$$
\begin{align*}
\Phi \frac{\partial S}{\partial t}+\frac{\partial}{\partial x} f(S) & =0, \\
f(S) & =\frac{q k_{v}(S) / \mu_{v}}{k_{o}(1-S) / \mu_{o}+k_{v}(S) / \mu_{v}} . \tag{1}
\end{align*}
$$

(d) Let $\mu_{o}=\mu_{v}$ and $k_{o}(1-S)=1-S^{2}, k_{v}(S)=S^{2}$. Solve (??) for $t>0$ for a rod with length L when

$$
\begin{array}{cl}
S(x, 0)=1-x / L, & 0 \leq x \leq L, \\
S(0, t)=1, & 0 \leq t .
\end{array}
$$

3 (Problem 1.13 in Ockendon, Howison, Lacey, Movchan, Applied Partial Differential Equations)
Paint flowing down a wall has thickness $u(x, t)$ satisfying $\frac{\partial u}{\partial t}+u^{2} \frac{\partial u}{\partial x}=0$ for $t>0$.
(a) Show that the characteristics are straight and that the Rankine-Hugoniot condition at a shock $x=S(t)$ is $\mathrm{d} S / \mathrm{d} t=\left[\frac{1}{3} u^{3}\right]_{-}^{+} /[u]_{-}^{+}$.

A stripe of paint is applied at $t=0$ so that

$$
u(x, 0)= \begin{cases}0, & x<0 \text { or } x>1, \\ 1, & 0<x<1 .\end{cases}
$$

(b) Show that, for small enough t,

$$
u= \begin{cases}0, & x<0, \\ (x / t)^{1 / 2}, & 0<x<t, \\ 1, & t<x<S(t), \\ 0, & S(t)<x,\end{cases}
$$

where the shock is given by $x=S(t)=1+t / 3$.
(c) Explain why this solution changes at $t=3 / 2$, and show that thereafter

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=\frac{S}{3 t} .
$$

