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Solutions to exercise set 9

1 (a) The initial value problem for the heat equation is ut = c2uxx, u(x, 0) = u0(x), c 6=
0. We assume that u, uxx ∈ L2(R) for each t. The Fourier transform in x gives
that the IVP is

ût(ξ, t) = −c2ξ2û(ξ, t), solving yields

û(ξ, t) = û0(ξ)e−c
2ξ2t, we take the inverse Fourier transform

u(x, t) = uF (·, t) ∗ u0(·)(x, t) =
1√
2π
F−1

(
e−c

2ξ2t
)
∗ u0(x)

=
1√

4πc2t

∞∫
−∞

e−
(x−z)2

4tc2 u0(z) dz.

(b) Fourier transform gives the ODE ût = −c2ξ2û + f̂ . Multiply the equation by
the integrating factor ec

2ξ2t and use the product rule of differentiation to obtain

d

dt

(
ec

2ξ2tû
)

= ec
2ξ2tf̂ .

We integrate

û(ξ, t) = e−c
2ξ2tû0(ξ) +

t∫
0

e−c
2ξ2(t−s)f̂(ξ, s) ds.

Inverse Fourier transform gives

u(x, t) = uF (·, t) ∗ u0(·)(x, t) +

∫ t

0
uF (·, t− s) ∗ f(·, s) ds.

2 (a) We solve ct = κcxx (for example via the Fourier transform), and find that

c(x, t) =
1√

4πκt

∫ ∞
−∞

e−
(x−z)2

4κt c0(z) dz,

for some initial function c0. Our c0(x) = δ0(x), and thus cF = 1√
4πκt

e−
x2

4κt .

(b) We have that
∫∞
−∞ e

−u2 du =
√
π. Taking u = x√

4κt
and substituting gives∫ ∞

−∞
cF (x, t) dx =

1√
4πκt

√
4κt

∫ ∞
−∞

e−u
2

du = 1.

The mean value, µ, is given by µ(t) =
∫
xcF (x, t) dx. This integral is defined

for all t > 0. Moreover cF is an even function of x, while x is odd. This gives
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µ = 0 for all t > 0. The standard deviation, σ, when the mean value is zero is
given by σ(t)2 =

∫
x2cF (x, t) dx. We compute the integral

σ(t)2 =
1√

4πκt

∫ ∞
−∞

e−
x2

4κtx2 dx

=
(4κt)

3
2

√
4πκt

∫ ∞
−∞

u2e−u
2

du

= 2κt.

(c) We have jd(x0) = cx(x0) = 0.

(d) Linearity and translation invariance ensures that c(x, t) = cF (x, t) + cF (x −
2x0, t) solves the heat equation. Furthermore, as cF is even, (cF )x has to be
odd and thus cx(x0, t) = (cF )x(x0, t)+(cF )x(−x0, t) = 0. Moreover the integral∫∞
x0
c(x, t) dx =

∫∞
x0

(
cF (x, t) + cF (x − 2x0, t)

)
dx =

∫∞
−∞ cF (x, t) dx. As t → 0

we have that c→ δ0 in some sense.

3 (a) We look at an interval [x, x+ ∆x] on R, and get that the conservation of mass
in the interval is

change of mass in the interval

time
= flux in at x− flux out at (x+ ∆x),

⇓
d

dt

∫ x+∆x

x
φρ(y, t) dy = j(x, t)− j(x+ ∆x, t).

Applying Leibniz’s rule to the left hand side, we get∫ x+∆x

x
φρt(y, t) dy = −

∫ x+∆x

x
jx(y, t) dy.

In general, we have for a continuous function f that

lim
∆x→0

(
1

∆x

∫ x0+∆x

x0

f(x) dx

)
= f(x0),

and hence

φρt(x, t) = lim
∆x→0

(
1

∆x

∫ x+∆x

x
φρt(y, t) dy

)
= − lim

∆x→0

(
1

∆x

∫ x+∆x

x
jx(y, t) dy

)
= −jx(x, t).

Furthermore,

jx(x, t) =
∂

∂x

(
−ρk

µ
px

)
=

∂

∂x

(
−ρk

µ

∂

∂x
(ρRT )

)
= −kRT

µ
(ρρx)x,

and thus we have
ρt = K(ρρx)x

with

K =
kRT

µφ
.
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(b) Since ρF is even and ρF = 0 for x2 > 12Ct
2
3 , we get∫ ∞

−∞
ρF (x, t) dx = 2

∫ √12Ct2/3

0
ρF (x, t) dx

= 2

∫ √12Ct2/3

0
(Ct−

1
3 − 1

12
x2t−1) dx

= 2

[
Ct−

1
3x− 1

12

1

3
t−1x3

]√12Ct2/3

0

= 2

(
Ct−

1
3

√
12Ct

2
3 − 1

12

1

3
t−1(12Ct

2
3 )

3
2

)
= 2

(√
12C

3
2 − 1

3

√
12C

3
2

)
=

4

3

√
12C

3
2 .

With C = 3
1
3

4 , we get

∫ ∞
−∞

ρF (x, t) dx =
4

3

√
12

(
3

1
3

4

) 3
2

=
8√
3

√
3

8
= 1.

Following the hint and considering the regions separately, we immediately see
that ρF satisfies the given equation in the regions |x|2 > 12Ct

2
3 . In the region

|x|2 < 12Ct
2
3 , we have

(ρF )t = −1

3
Ct−

4
3 +

1

12
x2t−2,

(ρF )x = −1

6
xt−1,

(ρF )xx = −1

6
t−1,

and hence

2(ρF (ρF )x)x = 2(ρF )2
x + 2ρF (ρF )xx

= 2
1

62
x2t−2 + 2

(
−1

6
Ct−

1
3
−1 +

1

6

1

12
x2t−2

)
=

1

12
x2t−2 − 1

3
Ct−

4
3

= (ρF )t,

and thus the equation is satisfied by ρF also in this region.

(c) Because
∫∞
−∞ ρF dx = 1, we have that

f(0) =

∫ ∞
−∞

ρF (x, t)f(0) dx
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and applying this and that ρF ≥ 0, we get∣∣∣∣∫ ∞
−∞

ρF (x, t)f(x) dx− f(0)

∣∣∣∣ =

∣∣∣∣∫ ∞
−∞

ρF (x, t)(f(x)− f(0)) dx

∣∣∣∣
≤
∫ ∞
−∞

ρF (x, t) |f(x)− f(0)| dx

=

∫ √12Ct2/3

−
√

12Ct2/3
ρF (x, t) |f(x)− f(0)| dx

≤ max
|x|≤
√

12Ct2/3
|f(x)− f(0)| ·

∫ ∞
−∞

ρF (x, t) dx

= max
|x|≤
√

12Ct2/3
|f(x)− f(0)| .

Now we have

lim
t→0

∣∣∣∣∫ ∞
−∞

ρF (x, t)f(x) dx− f(0)

∣∣∣∣ ≤ lim√
12Ct2/3→0

(
max

|x|≤
√

12Ct2/3
|f(x)− f(0)|

)
= 0,

since f is continuous, and t→ 0 implies
√

12Ct2/3 → 0.

A fundamental solution is a solution with initial data ρF,0 = δ0, where the delta
function δ0(x) is a function such that∫ ∞

−∞
f(x)δ0(x) dx = f(0)

for any continuous function f . We have that∫ ∞
−∞

ρF (x, 0)f(x) dx = lim
t→0

∫ ∞
−∞

ρF (x, t)f(x) dx = f(0),

and hence the initial solution ρF (x, 0) of ρF is by definition a delta function.

(d) The equation is given, and as initial solution we follow the hint and use a
positive point source with integral 2. Thus we get{

ht = (h2)xx,

h(x, 0) = 2δ0.
(1)

Following a similar deduction as when solving problem (b), we get that∫ ∞
−∞

ρF (x, t) dx = 2 when C =

(
3

16

) 1
3

.

We therefore have that equation (4) in the problem set is a solution to (1)

above, with C =
(

3
16

) 1
3 . We then have that h > 0 for |x|2 < 12Ct

2
3 , and hence

the extension of wet ground at t = 10 is given by

|x| =
√

12Ct
2
3 =

√
12

(
3

16

) 1
3

10
2
3 = 12

1
2

(
3

16

) 1
6

10
1
3 ≈ 5.65.

October 30, 2017 Page 4 of 8



Solutions to exercise set 9

4 (a) Denote by c the concentration of contaminants. There are two sources of flux.
The first is the diffusive flux, given by Fick’s law:

jd = −κ ∂c
∂x
.

The second is the advective flux:

ja = Uc.

Together, they form the total flux:

j = jd + ja = −κ ∂c
∂x

+ Uc.

A point discharge will be carried a length L down the river after a time T =
L/U . The discharge will spread out due to diffusion; the extent of this can be
measured as in exercise 2c), i.e. the spread is proportional to

√
κT =

√
κL/U .

(b) Using the flux from a) and noting that the conversion of substance A into B
constitutes production terms, we state the conservation laws in integral form
for an interval [x1, x2] (we omit the t-dependence for readability):

d

dt

x2∫
x1

a(x)dx = κ

(
∂a

∂x
(x2)− ∂a

∂x
(x1)

)
− U(a(x2)− a(x1))−

x2∫
x1

µa(x)dx,

d

dt

x2∫
x1

b(x)dx = κ

(
∂b

∂x
(x2)− ∂b

∂x
(x1)

)
− U(b(x2)− b(x1)) +

x2∫
x1

µa(x)− λb(x)dx.

To obtain the differential form of the conservation equation, we take x2 =
x1 + ∆x, divide by ∆x and let ∆x→ 0. This yields

∂a

∂t
= κ

∂2a

∂x2
− U ∂a

∂x
− µa,

∂b

∂t
= κ

∂2b

∂x2
− U ∂b

∂x
+ µa− λb.

(c) We now neglect diffusion and consider the convection-reaction equations:

∂a

∂t
+ U

∂a

∂x
= −µa, x > 0, t > 0,

∂b

∂t
+ U

∂b

∂x
= µa− µb x > 0, t > 0.

We need some boundary conditions. Since there is a constant rate of discharge
of substance A at x = 0, we have a constant flux jA = Ua = q0 at x = 0, t > 0.
Additionally, we may assume that the river is uncontaminated at t = 0, and
that there is no discharge of substance B at x = 0. This gives the boundary
conditions:

a(0, t) =
q0

U
, t > 0

a(x, 0) = 0, x > 0

b(0, t) = 0, t > 0

b(x, 0) = 0, x > 0.
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We solve the PDEs using the method of lines. Taking z(t) = a(x(t), t), we get

ż = −µz
ẋ = U.

Solving these ODEs yields

z(t) = z(t0)eµ(t−t0)

x(t) = U(t− t0) + x0.

If t0 = 0, we have z(t0) = 0. Otherwise, z(t0) = q0
U . Now, to solve for b(x, t),

we take w(t) = b(x(t), t), observing that the characteristics for a and b are
identical. This gives us the ODE for w:

ẇ + µw = µz

⇒ ẇ + µw =
µq0

U
eµ(t−t0),

where we have disregarded the trivial case of characteristics starting at t = 0,
which result in b ≡ 0. Now, using the hint, we obtain

w(t) = C1eµt +
µq0

U
teµ(t−t0),

and applying the initial condition w(t0) = 0, we get

w(t) = (t− t0)
µq0

U
eµ(t−t0),

yielding

b(U(t− t0), t) = (t− t0)
µq0

U
eµ(t−t0).

We now ”invert” by reintroducing x = U(t− t0) and get

b(x, t) =

{
x
µq0

U2
e
µx
U , x < Ut

0, x > Ut.

To obtain the point of highest concentration of B, we fix a t and observe that,
disregarding the case with b = 0:

d

dx
b(x, t) =

µq0

U2
e
µx
U (1− µ

U
x) = 0

⇒ x =
U

µ
.

This x is attainable if t > 1
µ . Otherwise, since d

dxb(x, t) > 0 for x < U
µ , the

maximum is attained at x = Ut.

5 (a) We do the computations with a segment with width B and introduce density,
flux and sources. Here we assume that the density of sand ρ is a constant. The
flux then becomes ρj and the source function will be ρq(x; t). (However, both
B and ρ drop out from the relations at the end, such that we could as well
compute per unit width, and with ρ = 1).
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Our control volume has width B and extends from x = x0 to x = x1 . Thus,
we obtain the general (one-dimensional) conservation law

d

dt

∫ x1

x0

ρB (b (x, t)− h) dx+

(
−k ∂b

∂x
(x1, t) + k

∂b

∂x
(x0, t)

)
ρB =

∫ x1

x0

q (x, t) (ρB) dx.

or

d

dt

∫ x1

x0

(b (x, t)− h) dx+

(
−k ∂b

∂x
(x1, t) + k

∂b

∂x
(x0, t)

)
=

∫ x1

x0

q (x, t) dx,

If we let x1 → x0 and divide by (x1 − x0), we obtain

∂

∂t
(b− h) =

∂b

∂t
= k

∂2b

∂x2
+ q.

(b) In this case, the source is localized at x = 0, such that the equation for x > 0
becomes just bt = kbxx . We scale b with h and the solution is

b = hf (x, t, k)

It is not obvious that we have a similarity solution since the depth h could
be a length scale, but this length is not associated with the horizontal length.
The problem is completely equivalent to a heat conduction problem where the
temperature is constant and equal to T0 at x = 0, and T∞ when x = ∞. The
temperature could then be written as T (x, t) = T0 + (T∞ − T0) τ (x, t, k), and
we obtain a similarity solution. Similarly to the temperature,we should be able
to write the solution for b as

b = −hβ
(

x√
kt

)
= −hβ (η) , η =

x√
kt
,

where β (0) = 0 and β (η) → 1 when η → ∞. Entering this into the equation
after dividing by −h lead to

βt − kβxx = −1

2

x√
k

1

t3/2
β′ − k 1

kt
β′′ = 0,

or
β′′ +

η

2
β′ = 0.

This is the equation given in the problem. By the hint and conditions b(0, t) = 0,
b(∞, t) = −h we see that

b (x, t) = −h erf

(
x√
kt

)
.

(c) The sand and clay volume at sea (x ≥ x0 here) is given by

V (t) =

∫ ∞
x0

B(h− b(x, t)) dx

=

∫ Ut−x0

x0

B(h− b(x, t)) dx+

∫ ∞
Ut−x0

B(h− b(x, t)) dx

= BhUt+

∫ ∞
0

b0(y) dy,
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where B was determined in a). By definition, q0 = V ′(t), and hence

U =
q0

Bh
.

If we let η = x − Ut − x0 and put b into the equation where x > Ut + x0, we
obtain

−Ub′0 = kb′′0.

thus

b′′0 +
U

k
b′0 = 0,

with general solution

b0 (η) = C1 + C2 exp

(
−U
k
η

)
.

It is required that

b0 (0) = 0,

b0 (∞) = −h,

such that the solution becomes

b0 (η) = h

(
exp

(
−U
k
η

)
− 1

)
.

Introducing the original variables leads to

b (x, t) =

{
0, x ≤ s (t) = Ut+ x0,

h
(
exp

(
−U
k (x− Ut− x0)

)
− 1
)
, x > Ut+ x0.
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