

TMA4195

Mathematical Modelling Autumn 2017

Norwegian University of Science and Technology Department of Mathematical Sciences

Solutions to exercise set 9

(a) The initial value problem for the heat equation is $u_t = c^2 u_{xx}$, $u(x,0) = u_0(x)$, $c \neq 0$. We assume that $u, u_{xx} \in L^2(\mathbb{R})$ for each t. The Fourier transform in x gives that the IVP is

$$\hat{u}_t(\xi,t) = -c^2 \xi^2 \hat{u}(\xi,t), \quad \text{solving yields}$$

$$\hat{u}(\xi,t) = \hat{u}_0(\xi) e^{-c^2 \xi^2 t}, \quad \text{we take the inverse Fourier transform}$$

$$u(x,t) = u_F(\cdot,t) * u_0(\cdot)(x,t) = \frac{1}{\sqrt{2\pi}} \mathcal{F}^{-1} \left(e^{-c^2 \xi^2 t} \right) * u_0(x)$$

$$= \frac{1}{\sqrt{4\pi c^2 t}} \int_{-\infty}^{\infty} e^{-\frac{(x-z)^2}{4tc^2}} u_0(z) \, \mathrm{d}z.$$

(b) Fourier transform gives the ODE $\hat{u}_t = -c^2 \xi^2 \hat{u} + \hat{f}$. Multiply the equation by the integrating factor $e^{c^2 \xi^2 t}$ and use the product rule of differentiation to obtain

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(e^{c^2 \xi^2 t} \hat{u} \right) = e^{c^2 \xi^2 t} \hat{f}.$$

We integrate

$$\hat{u}(\xi,t) = e^{-c^2 \xi^2 t} \hat{u}_0(\xi) + \int_0^t e^{-c^2 \xi^2 (t-s)} \hat{f}(\xi,s) \, ds.$$

Inverse Fourier transform gives

$$u(x,t) = u_F(\cdot,t) * u_0(\cdot)(x,t) + \int_0^t u_F(\cdot,t-s) * f(\cdot,s) ds.$$

2 (a) We solve $c_t = \kappa c_{xx}$ (for example via the Fourier transform), and find that

$$c(x,t) = \frac{1}{\sqrt{4\pi\kappa t}} \int_{-\infty}^{\infty} e^{-\frac{(x-z)^2}{4\kappa t}} c_0(z) dz,$$

for some initial function c_0 . Our $c_0(x) = \delta_0(x)$, and thus $c_F = \frac{1}{\sqrt{4\pi\kappa t}}e^{-\frac{x^2}{4\kappa t}}$.

(b) We have that $\int_{-\infty}^{\infty} e^{-u^2} du = \sqrt{\pi}$. Taking $u = \frac{x}{\sqrt{4\kappa t}}$ and substituting gives

$$\int_{-\infty}^{\infty} c_F(x,t) dx = \frac{1}{\sqrt{4\pi\kappa t}} \sqrt{4\kappa t} \int_{-\infty}^{\infty} e^{-u^2} du = 1.$$

The mean value, μ , is given by $\mu(t) = \int x c_F(x,t) dx$. This integral is defined for all t > 0. Moreover c_F is an even function of x, while x is odd. This gives

 $\mu = 0$ for all t > 0. The standard deviation, σ , when the mean value is zero is given by $\sigma(t)^2 = \int x^2 c_F(x,t) dx$. We compute the integral

$$\sigma(t)^{2} = \frac{1}{\sqrt{4\pi\kappa t}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{4\kappa t}} x^{2} dx$$
$$= \frac{(4\kappa t)^{\frac{3}{2}}}{\sqrt{4\pi\kappa t}} \int_{-\infty}^{\infty} u^{2} e^{-u^{2}} du$$
$$= 2\kappa t.$$

- (c) We have $\mathbf{j}_d(x_0) = c_x(x_0) = 0$.
- (d) Linearity and translation invariance ensures that $c(x,t) = c_F(x,t) + c_F(x-2x_0,t)$ solves the heat equation. Furthermore, as c_F is even, $(c_F)_x$ has to be odd and thus $c_x(x_0,t) = (c_F)_x(x_0,t) + (c_F)_x(-x_0,t) = 0$. Moreover the integral $\int_{x_0}^{\infty} c(x,t) \, \mathrm{d}x = \int_{x_0}^{\infty} \left(c_F(x,t) + c_F(x-2x_0,t) \right) \, \mathrm{d}x = \int_{-\infty}^{\infty} c_F(x,t) \, \mathrm{d}x$. As $t \to 0$ we have that $c \to \delta_0$ in some sense.
- [3] (a) We look at an interval $[x, x + \Delta x]$ on \mathbb{R} , and get that the conservation of mass in the interval is

$$\frac{\text{change of mass in the interval}}{\text{time}} = \text{flux in at } x - \text{flux out at } (x + \Delta x),$$

$$\Downarrow$$

$$\frac{d}{dt} \int_{x}^{x + \Delta x} \phi \rho(y, t) \, dy = j(x, t) - j(x + \Delta x, t).$$

Applying Leibniz's rule to the left hand side, we get

$$\int_{T}^{x+\Delta x} \phi \rho_t(y,t) \, dy = -\int_{T}^{x+\Delta x} j_x(y,t) \, dy.$$

In general, we have for a continuous function f that

$$\lim_{\Delta x \to 0} \left(\frac{1}{\Delta x} \int_{x_0}^{x_0 + \Delta x} f(x) \, dx \right) = f(x_0),$$

and hence

$$\phi \rho_t(x,t) = \lim_{\Delta x \to 0} \left(\frac{1}{\Delta x} \int_x^{x+\Delta x} \phi \rho_t(y,t) \, dy \right)$$
$$= -\lim_{\Delta x \to 0} \left(\frac{1}{\Delta x} \int_x^{x+\Delta x} j_x(y,t) \, dy \right) = -j_x(x,t).$$

Furthermore,

$$j_x(x,t) = \frac{\partial}{\partial x} \left(-\rho \frac{k}{\mu} p_x \right) = \frac{\partial}{\partial x} \left(-\rho \frac{k}{\mu} \frac{\partial}{\partial x} (\rho RT) \right)$$
$$= -\frac{kRT}{\mu} (\rho \rho_x)_x,$$

and thus we have

$$\rho_t = K(\rho \rho_r)_r$$

with

$$K = \frac{kRT}{\mu\phi}.$$

(b) Since ρ_F is even and $\rho_F = 0$ for $x^2 > 12Ct^{\frac{2}{3}}$, we get

$$\int_{-\infty}^{\infty} \rho_F(x,t) \, dx = 2 \int_0^{\sqrt{12Ct^{2/3}}} \rho_F(x,t) \, dx$$

$$= 2 \int_0^{\sqrt{12Ct^{2/3}}} \left(Ct^{-\frac{1}{3}} - \frac{1}{12}x^2t^{-1}\right) dx$$

$$= 2 \left[Ct^{-\frac{1}{3}}x - \frac{1}{12}\frac{1}{3}t^{-1}x^3\right]_0^{\sqrt{12Ct^{2/3}}}$$

$$= 2 \left(Ct^{-\frac{1}{3}}\sqrt{12Ct^{\frac{2}{3}}} - \frac{1}{12}\frac{1}{3}t^{-1}(12Ct^{\frac{2}{3}})^{\frac{3}{2}}\right)$$

$$= 2 \left(\sqrt{12}C^{\frac{3}{2}} - \frac{1}{3}\sqrt{12}C^{\frac{3}{2}}\right) = \frac{4}{3}\sqrt{12}C^{\frac{3}{2}}.$$

With $C = \frac{3^{\frac{1}{3}}}{4}$, we get

$$\int_{-\infty}^{\infty} \rho_F(x,t) \, dx = \frac{4}{3} \sqrt{12} \left(\frac{3^{\frac{1}{3}}}{4} \right)^{\frac{3}{2}} = \frac{8}{\sqrt{3}} \frac{\sqrt{3}}{8} = 1.$$

Following the hint and considering the regions separately, we immediately see that ρ_F satisfies the given equation in the regions $|x|^2 > 12Ct^{\frac{2}{3}}$. In the region $|x|^2 < 12Ct^{\frac{2}{3}}$, we have

$$(\rho_F)_t = -\frac{1}{3}Ct^{-\frac{4}{3}} + \frac{1}{12}x^2t^{-2},$$

$$(\rho_F)_x = -\frac{1}{6}xt^{-1},$$

$$(\rho_F)_{xx} = -\frac{1}{6}t^{-1},$$

and hence

$$2(\rho_F(\rho_F)_x)_x = 2(\rho_F)_x^2 + 2\rho_F(\rho_F)_{xx}$$

$$= 2\frac{1}{6^2}x^2t^{-2} + 2\left(-\frac{1}{6}Ct^{-\frac{1}{3}-1} + \frac{1}{6}\frac{1}{12}x^2t^{-2}\right)$$

$$= \frac{1}{12}x^2t^{-2} - \frac{1}{3}Ct^{-\frac{4}{3}}$$

$$= (\rho_F)_t,$$

and thus the equation is satisfied by ρ_F also in this region.

(c) Because $\int_{-\infty}^{\infty} \rho_F dx = 1$, we have that

$$f(0) = \int_{-\infty}^{\infty} \rho_F(x, t) f(0) dx$$

and applying this and that $\rho_F \geq 0$, we get

$$\left| \int_{-\infty}^{\infty} \rho_F(x,t) f(x) \, dx - f(0) \right| = \left| \int_{-\infty}^{\infty} \rho_F(x,t) (f(x) - f(0)) \, dx \right|$$

$$\leq \int_{-\infty}^{\infty} \rho_F(x,t) |f(x) - f(0)| \, dx$$

$$= \int_{-\sqrt{12Ct^{2/3}}}^{\sqrt{12Ct^{2/3}}} \rho_F(x,t) |f(x) - f(0)| \, dx$$

$$\leq \max_{|x| \leq \sqrt{12Ct^{2/3}}} |f(x) - f(0)| \cdot \int_{-\infty}^{\infty} \rho_F(x,t) \, dx$$

$$= \max_{|x| \leq \sqrt{12Ct^{2/3}}} |f(x) - f(0)|.$$

Now we have

$$\lim_{t \to 0} \left| \int_{-\infty}^{\infty} \rho_F(x, t) f(x) \, dx - f(0) \right| \le \lim_{\sqrt{12Ct^{2/3}} \to 0} \left(\max_{|x| \le \sqrt{12Ct^{2/3}}} |f(x) - f(0)| \right) = 0,$$

since f is continuous, and $t \to 0$ implies $\sqrt{12Ct^{2/3}} \to 0$.

A fundamental solution is a solution with initial data $\rho_{F,0} = \delta_0$, where the delta function $\delta_0(x)$ is a function such that

$$\int_{-\infty}^{\infty} f(x)\delta_0(x) dx = f(0)$$

for any continuous function f. We have that

$$\int_{-\infty}^{\infty} \rho_F(x,0) f(x) dx = \lim_{t \to 0} \int_{-\infty}^{\infty} \rho_F(x,t) f(x) dx = f(0),$$

and hence the initial solution $\rho_F(x,0)$ of ρ_F is by definition a delta function.

(d) The equation is given, and as initial solution we follow the hint and use a positive point source with integral 2. Thus we get

(1)
$$\begin{cases} h_t = (h^2)_{xx}, \\ h(x,0) = 2\delta_0. \end{cases}$$

Following a similar deduction as when solving problem (b), we get that

$$\int_{-\infty}^{\infty} \rho_F(x,t) \, dx = 2 \quad \text{when } C = \left(\frac{3}{16}\right)^{\frac{1}{3}}.$$

We therefore have that equation (4) in the problem set is a solution to (1) above, with $C = \left(\frac{3}{16}\right)^{\frac{1}{3}}$. We then have that h > 0 for $|x|^2 < 12Ct^{\frac{2}{3}}$, and hence the extension of wet ground at t = 10 is given by

$$|x| = \sqrt{12Ct^{\frac{2}{3}}} = \sqrt{12\left(\frac{3}{16}\right)^{\frac{1}{3}}10^{\frac{2}{3}}} = 12^{\frac{1}{2}}\left(\frac{3}{16}\right)^{\frac{1}{6}}10^{\frac{1}{3}} \approx 5.65.$$

(a) Denote by c the concentration of contaminants. There are two sources of flux. The first is the diffusive flux, given by Fick's law:

$$j_d = -\kappa \frac{\partial c}{\partial x}.$$

The second is the advective flux:

$$j_a = Uc$$
.

Together, they form the total flux:

$$j = j_d + j_a = -\kappa \frac{\partial c}{\partial x} + Uc.$$

A point discharge will be carried a length L down the river after a time T=L/U. The discharge will spread out due to diffusion; the extent of this can be measured as in exercise 2c), i.e. the spread is proportional to $\sqrt{\kappa T} = \sqrt{\kappa L/U}$.

(b) Using the flux from a) and noting that the conversion of substance A into B constitutes production terms, we state the conservation laws in integral form for an interval $[x_1, x_2]$ (we omit the t-dependence for readability):

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{x_1}^{x_2} a(x) \mathrm{d}x = \kappa \left(\frac{\partial a}{\partial x}(x_2) - \frac{\partial a}{\partial x}(x_1) \right) - U(a(x_2) - a(x_1)) - \int_{x_1}^{x_2} \mu a(x) \mathrm{d}x,$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{x_1}^{x_2} b(x) \mathrm{d}x = \kappa \left(\frac{\partial b}{\partial x}(x_2) - \frac{\partial b}{\partial x}(x_1) \right) - U(b(x_2) - b(x_1)) + \int_{x_1}^{x_2} \mu a(x) - \lambda b(x) \mathrm{d}x.$$

To obtain the differential form of the conservation equation, we take $x_2 = x_1 + \Delta x$, divide by Δx and let $\Delta x \to 0$. This yields

$$\frac{\partial a}{\partial t} = \kappa \frac{\partial^2 a}{\partial x^2} - U \frac{\partial a}{\partial x} - \mu a,$$

$$\frac{\partial b}{\partial t} = \kappa \frac{\partial^2 b}{\partial x^2} - U \frac{\partial b}{\partial x} + \mu a - \lambda b.$$

(c) We now neglect diffusion and consider the convection-reaction equations:

$$\frac{\partial a}{\partial t} + U \frac{\partial a}{\partial x} = -\mu a, \qquad x > 0, t > 0,$$

$$\frac{\partial b}{\partial t} + U \frac{\partial b}{\partial x} = \mu a - \mu b \qquad x > 0, t > 0.$$

We need some boundary conditions. Since there is a constant rate of discharge of substance A at x = 0, we have a constant flux $j_A = Ua = q_0$ at x = 0, t > 0. Additionally, we may assume that the river is uncontaminated at t = 0, and that there is no discharge of substance B at x = 0. This gives the boundary conditions:

$$a(0,t) = \frac{q_0}{U},$$
 $t > 0$
 $a(x,0) = 0,$ $x > 0$
 $b(0,t) = 0,$ $t > 0$
 $b(x,0) = 0,$ $x > 0.$

We solve the PDEs using the method of lines. Taking z(t) = a(x(t), t), we get

$$\dot{z} = -\mu z$$

$$\dot{x} = U.$$

Solving these ODEs yields

$$z(t) = z(t_0)e^{\mu(t-t_0)}$$

 $x(t) = U(t-t_0) + x_0.$

If $t_0 = 0$, we have $z(t_0) = 0$. Otherwise, $z(t_0) = \frac{q_0}{U}$. Now, to solve for b(x,t), we take w(t) = b(x(t),t), observing that the characteristics for a and b are identical. This gives us the ODE for w:

$$\dot{w} + \mu w = \mu z$$

$$\Rightarrow \dot{w} + \mu w = \frac{\mu q_0}{U} e^{\mu(t - t_0)},$$

where we have disregarded the trivial case of characteristics starting at t = 0, which result in $b \equiv 0$. Now, using the hint, we obtain

$$w(t) = C_1 e^{\mu t} + \frac{\mu q_0}{U} t e^{\mu(t-t_0)},$$

and applying the initial condition $w(t_0) = 0$, we get

$$w(t) = (t - t_0) \frac{\mu q_0}{U} e^{\mu(t - t_0)},$$

yielding

$$b(U(t-t_0),t) = (t-t_0)\frac{\mu q_0}{U}e^{\mu(t-t_0)}.$$

We now "invert" by reintroducing $x = U(t - t_0)$ and get

$$b(x,t) = \begin{cases} x \frac{\mu q_0}{U^2} e^{\frac{\mu x}{U}}, & x < Ut \\ 0, & x > Ut. \end{cases}$$

To obtain the point of highest concentration of B, we fix a t and observe that, disregarding the case with b=0:

$$\frac{\mathrm{d}}{\mathrm{d}x}b(x,t) = \frac{\mu q_0}{U^2} e^{\frac{\mu x}{U}} (1 - \frac{\mu}{U}x) = 0$$

$$\Rightarrow x = \frac{U}{\mu}.$$

This x is attainable if $t > \frac{1}{\mu}$. Otherwise, since $\frac{d}{dx}b(x,t) > 0$ for $x < \frac{U}{\mu}$, the maximum is attained at x = Ut.

[5] (a) We do the computations with a segment with width B and introduce density, flux and sources. Here we assume that the density of sand ρ is a constant. The flux then becomes ρj and the source function will be $\rho q(x;t)$. (However, both B and ρ drop out from the relations at the end, such that we could as well compute per unit width, and with $\rho = 1$).

Our control volume has width B and extends from $x = x_0$ to $x = x_1$. Thus, we obtain the general (one-dimensional) conservation law

$$\frac{d}{dt} \int_{x_0}^{x_1} \rho B\left(b\left(x,t\right) - h\right) dx + \left(-k \frac{\partial b}{\partial x}\left(x_1,t\right) + k \frac{\partial b}{\partial x}\left(x_0,t\right)\right) \rho B = \int_{x_0}^{x_1} q\left(x,t\right) \left(\rho B\right) dx.$$

or

$$\frac{d}{dt} \int_{x_0}^{x_1} \left(b\left(x, t \right) - h \right) dx + \left(-k \frac{\partial b}{\partial x} \left(x_1, t \right) + k \frac{\partial b}{\partial x} \left(x_0, t \right) \right) = \int_{x_0}^{x_1} q\left(x, t \right) dx,$$

If we let $x_1 \to x_0$ and divide by $(x_1 - x_0)$, we obtain

$$\frac{\partial}{\partial t}(b-h) = \frac{\partial b}{\partial t} = k\frac{\partial^2 b}{\partial x^2} + q.$$

(b) In this case, the source is localized at x = 0, such that the equation for x > 0 becomes just $b_t = kb_{xx}$. We scale b with h and the solution is

$$b = h f(x, t, k)$$

It is not obvious that we have a similarity solution since the depth h could be a length scale, but this length is not associated with the horizontal length. The problem is completely equivalent to a heat conduction problem where the temperature is constant and equal to T_0 at x = 0, and T_∞ when $x = \infty$. The temperature could then be written as $T(x,t) = T_0 + (T_\infty - T_0) \tau(x,t,k)$, and we obtain a similarity solution. Similarly to the temperature, we should be able to write the solution for b as

$$b = -h\beta\left(\frac{x}{\sqrt{kt}}\right) = -h\beta\left(\eta\right), \ \eta = \frac{x}{\sqrt{kt}},$$

where $\beta(0) = 0$ and $\beta(\eta) \to 1$ when $\eta \to \infty$. Entering this into the equation after dividing by -h lead to

$$\beta_t - k\beta_{xx} = -\frac{1}{2} \frac{x}{\sqrt{k}} \frac{1}{t^{3/2}} \beta' - k \frac{1}{kt} \beta'' = 0,$$

or

$$\beta'' + \frac{\eta}{2}\beta' = 0.$$

This is the equation given in the problem. By the hint and conditions b(0,t) = 0, $b(\infty,t) = -h$ we see that

$$b(x,t) = -h\operatorname{erf}\left(\frac{x}{\sqrt{kt}}\right).$$

(c) The sand and clay volume at sea $(x \ge x_0 \text{ here})$ is given by

$$V(t) = \int_{x_0}^{\infty} B(h - b(x, t)) dx$$

= $\int_{x_0}^{Ut - x_0} B(h - b(x, t)) dx + \int_{Ut - x_0}^{\infty} B(h - b(x, t)) dx$
= $BhUt + \int_0^{\infty} b_0(y) dy$,

where B was determined in a). By definition, $q_0 = V'(t)$, and hence

$$U = \frac{q_0}{Bh}.$$

If we let $\eta = x - Ut - x_0$ and put b into the equation where $x > Ut + x_0$, we obtain

$$-Ub_0' = kb_0''.$$

thus

$$b_0'' + \frac{U}{k}b_0' = 0,$$

with general solution

$$b_0(\eta) = C_1 + C_2 \exp\left(-\frac{U}{k}\eta\right).$$

It is required that

$$b_0(0) = 0,$$

$$b_0(\infty) = -h,$$

such that the solution becomes

$$b_0(\eta) = h\left(\exp\left(-\frac{U}{k}\eta\right) - 1\right).$$

Introducing the original variables leads to

$$b(x,t) = \begin{cases} 0, & x \le s(t) = Ut + x_0, \\ h\left(\exp\left(-\frac{U}{k}(x - Ut - x_0)\right) - 1\right), & x > Ut + x_0. \end{cases}$$