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Exam in TMA4195 Mathematical Modeling 16.12.2017
Solutions

Problem 1

a) Here x, y are two populations varying with time t.
The equation for ẋ consists of:
rx(1− x

K
) logistic growth term of rate r and capacity K,

− axy

c+ x
death term of rate a and dependent on both x and y,

while the equation for ẏ consists of:
−my death term, of rate a,

+ bxy

c+ x
growth term of rate b and dependent on both x and y.

Possible models include:

– x prey, y predators,
– x humans, y bacteria,
– x lemmings, y foxes,
– x fish, y fishermen.

b) We have [
ẋ
ẏ

]
= F (x, y) :=

[
x(2− x− y

1+x)
y(−1 + 2x

1+x)

]
(1)

Equilibrium points (xe, ye) are constant solutions of (1) and therefore the solutions of

x
(

2− x− y

1 + x

)
= 0,

y
(
− 1 + 2x

1 + x

)
= 0.
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The second equation is satisfied exactly when y = 0 or x = 1. For y = 0, the first
equation is satisfied exactly when x = 0 or x = 2, while if x = 1 the first equation is
satisfied only for y = 2. Thus the equilibrium points are given by:

(0, 0), (2, 0), (1, 2).

OBS: By carelessly multiplying the equations with (1 + x), one might conclude that
(−1, 0) is also an equilibrium point, which is not the case (check!).

To calculate the stability of the points we look at the Jacobian of F :

DF (x, y) :=
[2(1− x)− y

(1+x)2 − x
1+x

2y
(1+x)2 −1 + 2x

1+x

]

We calculate the eigenvalues λ1, λ2 of DF in the different equilibrium points:

DF (0, 0) =
[
2 0
0 −1

]
where λ1 = 2, λ2 = −1,

DF (2, 0) =
[
−2 2/3
0 1/3

]
where λ1 = −2, λ2 = 1/3,

DF (1, 2) =
[
−1/2 −1/2

1 0

]
where λ1 = −1

4 + i

√
7

4 , λ2 = −1
4 − i

√
7

4 .

The eigenvalues of the last matrix can be find by solving

det(DF (1, 2)− λI) = 0 ⇔ (−1/2− λ)(−λ)− (−1/2) = 0 ⇔ 2λ2 + λ+ 1 = 0.

An equilibrium point is stable if max{Reλ1,Reλ2} < 0 and unstable if max{Reλ1,Reλ2} >
0. Consequently we see that (0, 0) and (2, 0) are unstable while (1, 2) is stable.

Problem 2 Performing regular perturbation we write y as

y(x) = y0(x) + εy1(x) +O(ε2),

where y0, y1 are not dependent on ε. As f is smooth we can Taylor expand f about 0 to obtain

f(εy) = f(0) + f ′(0)εy +O(ε2),

which in turn can be written as

f(εy) = f(0) + f ′(0)ε
(
y0(t) + εy1(t) +O(ε2)

)
+O(ε2)

= f(0) + f ′(0)εy0(t) +O(ε2).



TMA4195 Mathematical Modeling, 16.12.2017, solutions Page 3 of 9

Inserting these two representations in the differential equation we obtain

y′′0 + εy′′1 + f(0) + f ′(0)εy0 +O(ε2) = 0,

while the initial conditions become

y0(0) + εy1(0) +O(ε2) = 0,
y0(1) + εy1(1) +O(ε2) = ε.

Equating terms of different order in ε, we obtain the system of equations:

O(1) : y′′0 + f(0) = 0, y0(0) = 0, y0(1) = 0,
O(ε) : y′′1 + f ′(0)y0 = 0, y0(0) = 0, y1(1) = 1.

Solving first for y0 we obtain

y0(x) = −1
2f(0)x2 + Ax+B,

where we must take A = 1
2f(0) and B = 0 to satisfy the boundary conditions for y0. We can

now insert for y0 in the expression for y1 to obtain

y′′1 + 1
2f
′(0)f(0)(x− x2) = 0,

=⇒ y1(x) = 1
2f
′(0)f(0)

(x4

12 −
x3

6
)

+ Cx+D,

and the boundary conditions gives C = 1 + 1
24f
′(0)f(0) and D = 0. We conclude that

y(x) = y0(x) + εy1(x) +O(ε2)

= 1
2f(0)(x− x2) + ε

(
x+ 1

24f
′(0)f(0)(x4 − 2x3 + x)

)
+O(ε2).

Problem 3

We set z(t) = ρ(x(t), t) and find that the characteristic equations in this case are given by
ẋ = j′(z) = ez, x(0) = x0 and ż = 0, z(0) = ρ0(x0). Solving we get

z(t) = ρ0(x0) and x(t) = eρ0(x0)t+ x0.

a) In this first case, we obtain the two family of (x-)characteristicsx(t) = x0 + et, x0 < 0,
x(t) = x0 + t, x0 > 0.
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The left characteristics overtake the right characteristics (collisions) in the region t <
x < et, so the physical solution ρ is a shock solution

ρ(x, t) =

1, x < s(t),
0, x > s(t),

where the shock curve s(t) starts at s = 0 and satisfies the Rankine-Hugoniot condition:

ṡ = j(1)− j(0)
1− 0 = e− 1, s(0) = 0 =⇒ s(t) = (e− 1)t.

b) In the second case, the two families of characteristics are given byx(t) = x0 + t, x0 < 0,
x(t) = x0 + et, x0 > 0.

The left characteristics are slower than the right characteristics so there is a region
t < x < et not reached by any characteristic (a dead sector). Hence the physical solution
is given by a rarefaction wave ρ(x, t) = ϕ(x/t). From the PDE for ρ we find that

− x
t2
ϕ′ + eϕ

1
t
ϕ′ = 0 =⇒

φ′ 6=0
eϕ = x

t
=⇒ ϕ(x/t) = ln(x/t).

We then get the solution:

ρ(x, t) =


0, x < t,

ln(x/t), t < x < et,

1, et < x.

Problem 4

a) For simplicity we drop the ∗-notation in this problem and let x, y denote points in R3.
We fix a point x in the rock formation and consider the ball Br := B(x, r), centered at x
with radius r > 0, whose volume will be denoted |Br|. By conservation of mass we have

d

dt

∫
Br

φρ dy = −
∫
∂Br

(j · n̂)dσ. (2)

Since we have a bounded smooth domain and smooth integrands, we may change the
order of differentiation and integration and use the divergence theorem to get

d

dt

∫
Br

φρ dy =
∫
Br

φρt dy,∫
∂Br

(j · n̂)dσ =
∫
Br

(∇ · j) dy.
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Consequently, (2) can be rewritten as∫
Br

(φρt +∇ · j) dy = 0. (3)

Let f := φρt +∇ · j, and divide by |Br|, and add and subtract f(x) in (3) to get

f(x) + 1
|Br|

∫
Br

(f(y)− f(x)) dy = 0. (4)

Since f is continuous f(y) ≈ f(x) for y ∈ Br and r � 1, and hence for r � 1,

1
|Br|

∫
Br

(f(y)− f(x)) dy ≈ 0 ·
∫
Br
dy

|Br|
=⇒ φρt(x, t) +∇ · j(x, t) = f(x) ≈ 0.

Sending r → 0 we get equality and the first equation for ρ in the problem.
[A rigorous argument which is not required for this exam, it given below:

1
|Br|

∣∣∣∣ ∫
Br

f(y)− f(x) dy
∣∣∣∣ = 1
|Br|

∣∣∣∣ ∫
Br

∫ 1

0

(
∇f(x+ s(y − x))

)
· (y − x) ds dy

∣∣∣∣,
≤ 1
|Br|

∫
Br

∫ 1

0
max
R3
|∇f |r ds dy = 1

|Br|
|Br|max

R3
|∇f |r → 0 as r → 0. ]

Combining Darcy’s law and ideal gas law, we get

j = −ρk
µ
∇p = −ρk

µ
RT∇ρ,

where we used that R, T are constants. Inserting this into the equation for ρ, we obtain

ρt = kRT

µφ
∇(ρ∇ρ) =: κ∇(ρ∇ρ). (5)

b) Let x∗ = Xx, y∗ = Y y, z∗ = Zz, t∗ = tt, ρ∗ = ρρ, and

x, y, z, t, ρ, ρx, ρxx, ρy, ρyy, ρz, ρzz ∼ 1 (scaling assumption).

By ideal gas law and max p∗ = p,

max ρ∗ = max p∗

RT
= p

RT
.

Thus ρ = p
RT

is a natural scale for ρ∗. Good scales for x∗, y∗, z∗ are

X = L, Y = Z = 500m = εL.
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The time scale is determined introducing the scaled quatities into (5) and balancing,

ρ

t
ρt = κ

(
ρ2

L2 (ρρx)x + ρ2

ε2L2 (ρρy)y + ρ2

ε2L2 (ρρz)z
)

=⇒ ρt = κρt

L2

(
(ρρx)x + 1

ε2 [(ρρy)y + (ρρz)z]
)
.

To arrive at the desired equation, we set t = L2/κρ.

c) When x2 > s(t)2, ρF = 0, and we immediately get

(ρF )t = 0 = (ρF (ρF )x)x.

When x2 < s(t), ρF = ct−
1
3 − 1

6x
2t−1, and we calculate

(ρF )t = −1
3ct
− 4

3 + 1
6x

2t−2, (ρF )x = −1
3xt

−1, (ρF )xx = −1
3t
−1,

to conclude that

(ρF (ρF )x)x = ((ρF )x)2 + ρF (ρF )xx

= 1
9x

2t−2 − 1
3ct
− 4

3 + 1
18x

2t−2

= −1
3ct
− 4

3 + 1
6x

2t−2 = (ρF )t.

Now we will show that ρF solves the conservation law in integral form on any 0 < a <
s(t) < b: The time change of mass inside [a, b] is equal the influx at x = a (i.e. +j(a, t))
plus the influx at x = b (i.e. −j(b, t)), and the (scaled) flux here is j = −ρρx (see also
the hint). Hence we have

d

dt

∫ b

a
ρ dx = −j(b, t) + j(a, t) = (ρρx)(b, t)− (ρρx)(a, t). (6)

Since ρF is a (classical) solution for x ∈ (a, s(t)) and ρ = 0 for x ∈ [s(t), b), we get

d

dt

∫
[a,b]

ρF dx = d

dt

( ∫ s(t)

a
ρF dx+

∫ b

s(t)
ρF dx︸ ︷︷ ︸
=0

)

= ρF (s(t), t)s′(t)︸ ︷︷ ︸
=0

+
∫ s(t)

a
(ρF )t dx (Leibniz rule)

= −
∫ s(t)

a
(ρF (ρF )x)x dx

= −ρρx|s(t)a = −ρρx|ba,
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and ρF satisfies (6).

Since ρF = 0 for |x| > s(t), we first note that
∫ s(t)
−s(t) ρF dx =

∫∞
−∞ ρF dx = 1. Then since

also ρF ≥ 0 and limt→0 s(t) = 0, for any continuous function f ,∣∣∣∣ ∫ ∞
−∞

ρF (x, t)f(x) dx− f(0)
∣∣∣∣ =

∣∣∣∣ ∫ s(t)

−s(t)
ρF (x, t)

(
f(x)− f(0)

)
dx

∣∣∣∣
= max
|x|≤s(t)

|f(x)− f(0)|
∫ s(t)

−s(t)
ρF (x, t) dx

= max
|x|≤s(t)

|f(x)− f(0)| → 0 as t→ 0.

The function ρF is a fundamental solution of equation (5) on the exam, if it is a solution
with initial condition equal to the delta function. The meaning of the initial condition
is that limt→0

∫∞
−∞ ρF (x, t)f(x) = f(0) for all continuous functions f . Both requirements

are satisfied by the previous parts of problem c), and hence ρF is a fundamental solution.

d) The idea of the method of intermediate asymptotics is to rescale the problem for large
(but finite!) times in such a way that the rescaled intitial data approximates the δ-
function. Then the solution of the rescaled problem will be close to the fundamental
solution of this problem. Going back to original variables, we get an approximation valid
for large times.
Let t̄ = 3 months and t1 = 5 days. Here we want to rescale the initial value problemρ∗t∗ + κ(ρ∗ρ∗x∗)x∗ = 0,

ρ∗(x∗, t1) = ρ∗0(x∗),

such that

(i) the time scale is t̄ = 3 months (large compared to t1),
(ii) the scaled equation becomes equation (5) on the exam (to be able to use part c)),
(iii) the scaled initial data ρ(x, 0) ≈ δ(x), the δ-function.

That is, we seek a scaled problem of the formρt + (ρρx)x = 0,
ρ(x, 0) ≈ δ(x),

(7)

If we can do that, we can conclude (by stability of the PDE) that the scaled solution
ρ ≈ ρF , where ρF is the fundamental solution given in part c). Going back to original
variables, we find an approximation of the solution ρ∗ at t∗ = t̄ = 3 months.
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Let us now show that (7) holds after scaling. Take ρ∗ = ρρ, t∗ = Tt, and x∗ = Xx. The
time scale T = t̄, and we choose X and ρ such that (7) holds.
From the equation, we find that

ρ∗t∗ + κ(ρ∗ρ∗x∗)x∗ = 0 =⇒ ρ

t̄
ρt + κρ2

X2 (ρρx)x = 0 =⇒ ρt + κρt̄

X2 (ρρx)x = 0,

and then we get (7) if
κρ2t̄

X2 = 1.

Next we look at the initial condition. Recall that ρ∗0 = 0 for |x∗| > l := 5 m and of
total mass M :=

∫∞
−∞ ρ

∗ dx∗. We want to choose a scaling such that
∫∞
−∞ ρ dx = 1 and

ρ(x, 0) = 0 for |x| > ε for some 0 < ε � 1, or in other words, ρ(x, 0) ≈ δ(x). The
integral 1 conditions is satisfied if

M =
∫ ∞
−∞

ρ∗ dx∗ = ρX
∫ ∞
−∞

ρ dx = ρX.

We now have two equations for two unknowns X and ρ, and the solution is

ρ =
(
M2

κt̄

) 1
3
, X =

(
κMt̄

) 1
3 .

Note that ρ(x, t1
t̄
) = 1

ρ̄
ρ∗(Xx, t1) = 0 for |Xx| ≥ l or |x| ≥ l

X
. Since t̄ = 3months '

8 · 106s, a quick calculation shows that

X =
(
κMT

) 1
3
'
(

10−5 · 108 · 8 · 106
) 1

3
m = 2000 m� 5 m = l.

Hence l
X
� 1, and since also t1

t̄
� 1, it follows that

ρ(x, 0) ' ρ(x, t1
t̄

) ' δ(x).

We conclude that an approximation of ρ∗ at t∗ = t̄ = 3 months, is given by

ρ∗(x∗, t̄) ' ρρF

(
x∗

X
,
t∗

t̄

)
=
(
M2

κt̄

) 1
3
ρF

(
x∗

(κMt̄) 1
3
, 1
)
.

As the rock formation is surrounded by impermeable rock, there can be no flux at the
boundaries, x∗ = ±L

2 . Thus the boundary conditions are

0 = j∗(±L
2 , T ) = ρ∗(±L

2 , T )ρ∗x∗(±L
2 , T ).
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This is indeed satisfied by our approximation since
L
2
X

=
L
2

(κMt̄) 1
3

= 2.5 > 1.651 ' (6c) 1
2 = s(1),

and then since ρF (x, t) = 0 for |x| > s(t),

ρ∗(±L2 , t̄) = ρ̄ρF

( L
2
X
, 1
)

= 0.


