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In our notation we write
u(z*) = e 1027 4 o=10027 1 ok o [0, 1]

for the unscaled relation.

We observe that the function u follows three different behaviours within the interval
[0,1]: At first, both terms are relevant, although the second term decreases much
faster than the first one (or: the derivative of the second term dominates); then, the
second term is essentially negligible, while the first one is still much larger than zero;
finally, both of the terms are essentially equal to zero.

Natural scalings:

1 *
1.) z*= 105> then e~ 109" 1, when z ~ 1;
1 * *
2) xf= 0% (then e 197" ~ 1 and 719" <« 1, when z ~ 1;

3.) z*=1-2, (then u~ 0, whenz ~ 1.

Reasonable regions for these scalings are as follows:

1. For the first scaling x* = ﬁx, we can use values x € [0, 2], corresponding to
¥ € [0, %}. Then

u(z) = e I 4o ] e

or
u(z*) ~ 1+ o100
2. Here we might choose values = € [%, 2}, corresponding to z* € [%00, 1—20] Then
u(z) =e T +e 0 xe
or

u(z™) ~ e 1077,

3. Here we can choose r = x* € [1%, 1], which yields

u(x) = e 107 471007 ~ ),

In all cases, the boundaries between the regions should be understood to be fuzzy,
and a small shift of them is perfectly fine.
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Solutions to exercise set 2

In our notation the problem can be written as

(1) m”(t") = —a, m*(0) = M,

8
*
—~
~
*
—

Natural scalings for z* and m™* are
" = Rz,

m* = Mm.

Assuming acceleration is mainly due to the rocket engine, we neglect for the time
being the gravity term. Then the scales V and T for velocity and time should be
chosen in such a way that the remaining terms in (2) balance, that is,

v v, af
— ~ = (t) = ==
7T =3

Also, the terms in (3) should be well scaled, that is, in the equation

%w’ =V,

the terms 2’ and v should be of the same order, implying that
R=VT.

Combining these relations yields the scalings

|RM Ragp
T=\— =4/ —.
of and \% %
In total, we obtain

M
¥ = Rx, m"= Mm, t*:”iﬁt’ v*zw/%ﬂﬁv.

Moreover, we obtain the scaled equations

with parameters
Ra d Mg
=4/—= an €= —.
M\ B aB
Here the parameter ¢ = Mg/af will be small provided that our assumption that
the acceleration is mainly due to the rocket engine was correct.
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Solutions to exercise set 2

The exact solution of the initial value problem is Yezact(t) = 6% (1 — e‘“) — é Let
Yapproz(t) = yo(t) + eyr1(t) + €2y2(t). We want Yapproxz tO satisfy the initial data
for every value of 0 < e < 1. This implies that yo(0) = y1(0) = y2(0) = 0 and
y6(0) = y1(0) = y5(0) = 0. Inserting Yappror in the equation, we get

yo +1+e (Wl +vo) +€ (5 +11) =0.

As this should hold for all 0 < € < 1, we have

Yo +1=0,
Yy +yp =0,
Y + 15 = 0.

The initial values and integration of the equations gives

1 1 1
Yapproz (t) = —§t2 + eéts - 62ﬂt4.

The Taylor expansion of yezact iS given by
n+1tn

) et [e'S) En_2 B
yea:act(t)ze% (1—2( nf) ) _z:Z(ﬂil')
’ n=2 :

n=0

The difference between the exact and approximate solution is then
X n-2 n+lsn

€ —1 t
Yexact — Yapprox = g ( )

n=>

— 420)( 343
" =t0O(e’t?).

Thus, as long as t and et are not too big, the approximation is very good. However,
for large values of et, the exact solution behaves like

t 1

yezact(t) ~ - = _?Eta
€ €

whereas the approximate solution behaves like

1 11
2 4 4,4
Yappron (8) ~ =€ 5 7t" = =g 55€t

Thus, for large values of ¢, we only have a good approximation, if € decreases at the
same time.

(a) From the problem’s nature we have 0 < v* (¢) < Vj. Then, Vj will be a scale for
v*, and moreover

*\2
‘b(”)‘<l?<<1.

|av*|

We find a time scale from the simplified equation m‘f;t’: + av* = 0 with solution

v* (t*) = Aexp (—% *), that is 7= ™. Alternatively, and this is easier, we find this
scale by balancing the first and second term in equation (5) in the problem set (set

v* =Vwv and t* =Tt):

dv* V dv V m
~ * —_—— A —_— ~ T ~ —,
m T av = mT 7 aVu i mT aV. = .
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Solutions to exercise set 2

Using this scaling, we obtain the equation in the desired form and ¢ = bVj/a < 1.
(b) Plugging in v (t) = vg (t) + €v1 (t) + - - - into the equation, we get that

O (60) : 1'10 = —79,
O (81) U1 = -1 +v8.

With the initial condition we obtain

<
=
—~
~
~—
I
@
@

or

v(t)=el+e(e" —e ) +0(?).

This is the so-called reqular perturbation. We have seen previously that the approx-
imative solution is not always reasonable when ¢ — oo, and we thus need to check
its long term validity.
From the theory we know that the exact solution has the form

ot

v =Ty

and since 0 < 1 —e ! < 1 for t > 0, we can write the solution as a convergent

geometric series.
_ k
Vex ( t E 1 —e

The initial terms in the perturbation expansion coincide with the initial terms in the
series above, and we have:

0 —t 2

Vex (t) — (vo () + vy (¢ _tz 1—e <e tEQZ&‘ 315_8.

Thus, we have

e—0 t>0

HmwaMW%m@+%MWO=Q

and so v,(t) = vo (t) + evy (t) is a uniform approximation to the exact solution on
the domain ¢t > 0.
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