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Solutions to exercise set 5

1 We consider the differential equation

du

dt
= u2(u2 − 1).

whose equilibrium solutions are

f(u) = u2(u2 − 1) = 0 ⇒ u0 = −1, u1 = 0, u2 = 1.

Let us study u0. To show it is stable, we introduce a small perturbation y(t). That
is:

u(t) = u0 + y(t).

After having plugged it in the original equation, we get

dy

dt
= f(u0)︸ ︷︷ ︸

=0

+f ′(u0)y +
1

2
f ′′(u0)y

2 + · · · .

Let us focus on the terms of order smaller than 1

dy

dt
= f ′(u0)y

whose solution is
y(t) = Ceαt with α = f ′(u0)

Thus, if α < 0, the perturbation y disappears with time and the equilibrium solution
u0 is asymptotic stable. If α > 0, the perturbation increases with time and the
equilibrium solution is unstable. In our case

f ′(u0) = 4u30 − 2u0 = −2,

Therefore u0 is a stable equilibrium solution. In the same way we can study the
equilibrium solution u2. We find that

f ′(u2) = 2

and u2 is unstable. For u1 we get f ′(u1) = 0, so we need to consider further terms
in the Taylor expansion. Let us add the second one. The equation

dy

dt
=

1

2
f ′′(u1)y

2 = −y2

has general solution

y(t) =
1

C + t
.

If we start for t = 0 with a small negative value for y, the constant C becomes
negative and the solution blows up whenever t→ −C. Therefore u1 is unstable.
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2 (a) The equilibrium points are given by

du

dt
= 0 ⇒


u0 = µ

u1 =
√
µ, µ ≥ 0

u2 = −√µ, µ ≥ 0

We have two bifurcation points, i.e. points where the solution curves intersect.
These points are given by µ = ±√µ, that is the two bifurcation points are
(0, 0), (1, 1). To say something about stability, we first calculate

f ′(u) = 3u2 − 2µu− µ

By plugging in the expression for the equilibrium solutions we get

f ′(u0) = µ(µ− 1)

f ′(u1) = 2µ(1−√µ)

f ′(u2) = 2µ(1 +
√
µ)

We see that u3 is always unstable, u2 is stable for µ > 1 and u1 is stable when
0 < µ < 1. We see that the stability changes at the bifurcation points. See
Figure 1 for the sketch of the bifurcation diagram.

(b) The equilibrium points are given by

du

dt
= 0 ⇒


u0 = 0

u1 = 9/µ, µ 6= 0

u2,3 = 1±
√
µ+ 1, µ ≥ −1

The branching diagram is showed in figure 3.

From the diagram we see that we have two bifurcation points, i.e. points where
the solution curves intersect. These points are given by

1−
√
µ+ 1 = 0

1 +
√
µ+ 1 = 9/µ

Hence the bifurcation points are (µ, u) = {(0, 0), (3, 3)}.
To say something about stability, we first calculate

f ′(u) = (9− µu)(µ+ 2u− u2)− µu(µ+ 2u− u2) + 2u(9− µu)(1− u)

By plugging in the expression for the equilibrium solutions we get

f ′(u0) = 9µ

f ′(u1) = −9

(
µ+

18

µ
− 81

µ2

)
= − 9

µ2
(
µ3 + 18µ− 81

)
= − 9

µ2
(µ− 3)(µ2 + 3µ+ 27)

f ′(u2) = 2
(

1−
√
µ+ 1

) [
9− µ

(
1−

√
µ+ 1

)]√
µ+ 1

f ′(u3) = −2
(

1 +
√
µ+ 1

) [
9− µ

(
1 +

√
µ+ 1

)]√
µ+ 1.
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Figure 1: Bifurcation diagram 2.2 (a).

By sketching a sign line for the expression on the right hand side we find that

u0 is

{
stable for µ < 0

unstable for µ > 0,

u1 is

{
stable for µ > 3

unstable for µ ∈ 〈−∞, 0〉 ∪ 〈0, 3〉,

u2 is

{
stable for µ > 0

unstable for µ ∈ 〈−1, 0〉,

u3 is

{
stable for µ ∈ 〈−1, 3〉
unstable for µ > 3.

We see from this that the stability changes in the bifurcation points.
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Figure 2: Branching diagram 2.2 (b).

3 We are given the equation

∂c

∂t
=
∂2c

∂x2
+ c(1− c), t > 0, x ∈ R.(1)

a) We linearize the equation around c = 0. It is more transparent to write the
equation as

ct = cxx + q(c).

The only term we need to linearize is q, since the other terms are already linear:

q(c) ≈ q(0) + q′(0)c = 0 + 1 · c = c,

and hence the linearized equation is

(2) ct = cxx + c,

where we have set c := cL(x, t). We thus have k = 1.

b) We can solve the linearized equation in many ways, but following the hint, we
want to transform it to the heat equation. We do this using an integrating
factor. Let c̄ = e−ktc and note that

∂

∂t
c̄ = e−kt(ct − kc) = e−ktcxx = c̄xx.

This can be solved by convolution with the fundamental solution cF :

c̄ = c̄0 ∗ cF =

∫ ∞
−∞

c̄(y, 0)cF (x− y, t)dy.
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We then get

cL(x, t) = ektc̄(x, t) = ekt
∫ ∞
−∞

c0(y)cF (x− y, t)dy,

where we note that c̄(y, 0) = e−0c(y, 0) = c0(y).

Inserting the given solution of the fundamental solution cF , we get

cL(x, t) = ekt
∫ ∞
−∞

c0(y)
1√
4πt

e−
(x−y)2

4t dy.

c) Using the hint, we calculate

|cL − 0| ≤ ekt
∫ ∞
−∞
|c0(y)|cF (x− y, t)dy ≤ ekt max

x∈R
|c0(x)| · 1 = ekt max

x∈R
|c0(x)− 0|.

d) The equilibrium points of (1) are its constant solutions, and if c = cE is a
constant solution of (1), then (cE)t = (cE)xx = 0 and q(cE) = cE(cE − 1) = 0.
The solutions/equilibrium points are therefore cE = 0 and cE = 1.

To study the stability of the equilibrium points cE , we check whether solutions
of the equation linearized arond cE that start near cE remain near for all times.
To do that, let

c(x, t) = cE + c̃(x, t)

and note that if c̃ is not so big, then

c̃t = c̃xx + q(cE + c̃) ≈ c̃xx + q(cE) + q′(cE)c̃.

Note that q(cE) = 0 and let ĉ be the solution of the linearized equation

(3) ct = cxx + q′(cE)c.

This linearized equation only has the equilibrium point ĉ = 0 (since q′ 6= 0).
By definition we say that cE is a stable(/unstable) equilibrium point of the
original non-linear equation according to linear stability analysis if ĉ = 0 is a
stable(/unstable) equilibrium point of the linearized equation 3.

We solve equation (3) and c(x, 0) = c0(x) as in part b), this time with using
the integrating factor e−q

′(ce)t:

ĉ(x, t) = eq
′(ce)t

∫
R
c0(y)cF (x− y, t)dy.

Note that if |c0(x)− 0| = |c0| < δ, then

|ĉ(x, t)− 0| ≤ max
x∈R
|c0(x)− 0| < δeq

′(ce)t.

Hence it follows that ĉ = 0 is a stable equilibrium point if q′(ce) ≤ 0 since then
small perturbations remain small for all times. On the other hand, if q′(ce) > 0,
then ĉ = 0 is not stable any more since we can find small perturbations that
blows up in time. Take e.g. c0 = δ and check that

ĉ(x, t) = δeq
′(ce)t →∞ as t→∞.

We compute q′ and find that q′(0) = 1 > 0 and q′(1) = −1 < 0. From the
discussion above we can then conclude according to linear stability analysis
that cE = 0 is unstable while cE = 1 is stable.
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