TMA4195
Mathematical Modelling
Autumn 2018

Norwegian University of Science

and Technology Solutions to exercise set 7
Department of Mathematical

Sciences

(a) The characteristic equations for Burgers’ equation read

T =z, z(0) = zo,
2=0 2(0) = up(zp).

Solving these equations gives

and
x(t) = xo + tug(xo).

Let us now first consider the case

(z) 0 ifxz<0,
uo\xr) =
0 1 ifz>0.

In this case, the characteristics are

0 ifx<0,
t ifz>t>0.

x(t) ::Co-i-{

The characteristics do not collide, and we have a well defined solution at all
points covered by the characteristics. More precisely, the characteristics z(t)
starting at x¢p < 0 imply that

u(z(t),t) = u(zo + 0,t) = uo(z0) = 0,
while those starting at xg > 0 imply that
u(z(t),t) = u(xg + t,t) = up(xo) = 1.

Or,

(2.1) 0 ifx<0,
u(x,t) =
1 ifz—t>0.

However, there is a “dead zone” in the cone 0 < x < t that is not covered by
characteristics Thus we model the solution in that region as a rarefaction wave

u(x,t)zgo(%) ifo<ax<t.

The function ¢ has to satisfy Burgers’ equation, that is, we need that

o= =5 ) () ()
= Uy — —— — —_ j— —
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or

Thus

and we obtain the solution

if x <0,
if 0 <z <t,
ifz>t>0.

u(z,t) =

=g O

Now we consider the case

(z) 1 ifz <O,
uo\xr) =
0 0 ifz>o0.

Here the characteristics are

t  ifx <0,
0 ifxz>0.

x(t) —wo-i-{

If either x < 0 or x > t > 0, there is a unique characteristic passing through
the point (z,t). Thus we obtain that

(2,1) 1 ifz <0,
ulx,t) =
0 ifx>t>0.

However, in all points (z,t) with ¢ > x > 0, two characteristics collide. Thus
we model the solution as a shock solution with

)1 if e <os(t),
uet) = {0 if x > s(t),

where the shock s satisfies the Rankine-Hugoniot condition

(u(s(t)", 1)) _ 312 =30* 1

oy = bl _ i) =5 ) 1
[u] u(s(t)™) —u(s(t)7) 1-0 2
with s(0) = 0. Thus
() = gt

and we obtain the shock solution

1 ifz < it
u(e,t)=4 T2

(b) The characteristic equations for this non-homogeneous equation are

T =z, x(0) = xo,
0 if <0
Z=—z, 2(0) = 1 0 ’
ro if zg > 0.
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For z¢p < 0, we immediately obtain the solutions z(¢) = 0 and x(t) = x¢. For
xg > 0, the equation for z has the solution

—t t

2(t) = ugp(zo)e™ " = xpe .

Inserted in the equation for x, this yields

&= xpe !

and therefore, using the initial condition z(0) = x,
z(t) = z9(2 — e F).

Since 1 < (2 — e ) < 2 for all t > 0, it follows that the characteristics do not
collide and cover the whole region « > 0, t > 0. Thus we obtain the solution

u(z(2—e"),t) =ze™

for z > 0, t > 0. Or, setting y = 2(2 — '), we obtain

—t
ye y

£) = - .

U e sy |

To summarise, we obtain

(z.1) 0 if £ <0,
u(z,t) = x .
(a) Let x(t) be given by @(t) = 1,2(0) = x¢ and define z(¢) = u (x(t),t). Then
2(t) = ut + ug - 1 = —u(x(t),t) = —=z(t), and the characteristic equations are
T =1, z(0) = o,
= —z, 2(0) = up(zo).

e~t. But zg is not given, we want to
t), xg = x —t and thus the solution is

This gives © = xo + t and 2(t) = ug(xo
compute u(z,t). We calculate xg from x
u(x,t) = up(x — t)e L.

(b) Let z(t) be given by #(t) = 1,z(0) = z¢ and define 2(t) = u (x(t),t). Then
Z(t) = up + uy - 1 = x(t), and the characteristic equations are

)
(

T =1, z(0) = zo,
=z, 2(0) = up(zp)-
The solutions are z(t) = zo + t,2(t) = 20 + 2ot + 5t>. This gives u(z,t) =
uo(z —t) + xt — $t2.
Remark: For equations of the type us+ f(u, x)u, = g(u, x) let z(t) = f(z,x), 2(t) =
u(x(t),t). Then
& = wn(a(t),£) + ua(a(t), ()
= up + f(u, w)ug = g(u, )
=9(z ),

and the characteristic equations are & = f(z,x), 2 = g(z,x). We need to be able to
solve the equations and find =z, 29 expressed with x, ¢, ug.
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(1.13 in Ockendon, Howison, Lacey, Movchan, Applied Partial Differential Equa-
tions)
a) Rankine-Hugoniot: for u; + a% f(u)=0:

dsS

St ) = fu) - f)

Here f(u) = u3, so

45 10— ()
dd 3 wut—wu

Characteristic equations: z(t) = u(x(t),t)

{a’c =fl(z) =22 z2(0)==x
£=0, 2(0) = u(x(0),0) = uo(xo)

Solution:

{z = const = ug(xp)
T = x0 + t(ug(m))?

Hence characteristics are straight lines.

b) The problem consists of 2 Riemann problems:

0 0
(1) ur + ulug =0, u(z,0) = v
1 >0 (z<1)
1 1 0
(2) up + utuy =0, u(z,0) = z<l (z>0)
0 z>1
For (1)

0 zo <0
r=x9+1t-
1 xg >0 <$0<1)

..

There is a ”dead sector” and we know we have to fill it with a rarefaction fan:

T

3) u(e,t) = (%)
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i.e. a function constant at rays out of (0,0). Insert (3) into (1) to find that

o (7) () +o0 (7)1 -0

S@=2 =e=4/7
Solution:
0, xz <0
u(r,t) = /%, 0<z<t
1, x>t (but not too big)
For (2):
1 <1 >0
z=xz0+1- "o (w0>0)
0 xo > 1
u=1
t
u=0
1 x

Characteristics collide at z = 1, hence there is a shock starting at (z,t) = (1,0)

and moving with speed
s 10°-1% 1

dt 3 0-1 3

Hence

The shock solution then becomes

(2.1) = 1 x<St) (r>t)
YU 0 2> 80

Total solution

0 <0
T
(@, ) = 7 O0<z <t
1 t<z<l+st

0 x>1+3t

Note: Solution only defined as long as t <1+ %t ort< %
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c) For t > 3, the left state of shock changes from (1) to /% = 4/ ¥(< 0) and
hence the speed of the shock changes to

ds 1 (ut)® —(u)?
dt 3 wut—u—
51\ /2
10 (%)
e
1.5(¢)

Since

we solve (separable equations) and find that

S(t) = <2>§t1/3

The new solution is then

0, xz <0
u(r,t) = /%5 0<z<S(t)
0, S(t) <z

and this solution persists until ¢ = +oo.

a) From the general conservation law it follows immediately that

d
— [ (®p)dV + / j-ndo = / qdV.
dt Jr OR R

We assume that the wells are §-functions (which is OK assuming the reservoir
is large compared to the wells),

2
q(x,t) =) qn(t)d (x — xp).
n=1

Thus

d .
— [ (®p)dV + / j-ndo=q +q.
dt Jr OR

If p is constant and the properties of R are unchanging in time, then

d
2 (@p)dv =
dt/R(p)V 0,

and the balance of the water is

/ J-ndo = q1 + qo.
OR
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b) When
_kg-m 1 kg

i 22 m?2 s2-m

kg-m 1 kg

Vpl = 2 m3 s2.m?’
the dimension matrix is

J K| p | Vp

kg | O 0 1 1

m| 1 2 | -1 =2

s | —-1]0]|—-1|-2

We see that the rank is 3, and we have a dimensionless combination, which we
find easily. Strictly speaking, we derive the relation for scalar quantities, and
use physical insight to find the given form. It may be noted that K in general
will not be a scalar, but a 2nd order tensor (This happens typically in layered
rocks where the pores are mostly in one direction).

c) We assume that the rod lies along the z-axis and has a constant cross section
A. The conservation law for a section of the rod is then

d b
dt/ (Si®)Adz + ji (B) A — js (@) A= 0, i = o,v.

We get the differential formulation in the usual way,

o5  0ji . .
‘1>(% +%—0,2—0,v.

We eliminate % by adding the equations for the flux:

- (k (52) 2 4k (5) K) % _

1o E or q,
ie.
o _ _ g
0 (ko (S0) £ 4 ey (50) &)
By inserting this in the equation for S = 5,, we get
S  0Oj,
Q)i _Jv __
ot ou
K
- @88—5 + aﬁ ko (S) — a
Rz o (ko (1= 8) K 4 1y (5) £)
oS 0
== - —
ot "ozt (9 =0

d) By inserting the given quantities, we see that f(S) = ¢S? and the equation

reduces to
9S8 ¢ 082 B

— 4+ I =
ot ¢ ox
This is a regular first order hyperbolic equation with kinematic velocity

0.

2
o(S) = gs.
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To study this more carefully, we set up the equation for a characteristic starting
point xg, where 0 < x¢ < L:

_ 2q _ 2q< 960)
x—xo+q>5(x0)t—xo+q) 1 7 t.

We leave to the reader to plot the characteristics. If we do this correctly, we see

that all the characteristics meet in the point z; = L, ts = %L. Furthermore,

the solution S = 1 above the characteristic that starts in the origin, i.e. x = %.

For a point (z,t) below this characteristic, we have

2
x:x0+—q(1—@)t,

d L
i.e.
2qt — x®
ro=L——
07 Hogt — oL
and o0t &
qi — T
f)=1— 1 "~
S (.t) 2t — DL
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