TMA4195 Mathematical Modelling Autumn 2019
Norwegian University of Science and Technology

Solutions to exercise set 3

Department of Mathematical
Sciences

1 Inserting $x=x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}+\cdots$ into the equation and collecting terms of the same order of ε, we get

$$
\ddot{x}_{0}+\varepsilon\left(\ddot{x}_{1}+2 \dot{x}_{0}+x_{0}\right)+\varepsilon^{2}\left(\ddot{x}_{2}+2 \dot{x}_{1}+x_{1}\right)+\ldots=0 .
$$

We hence get the following equations for x_{0} and x_{1} :

$$
\begin{aligned}
& \ddot{x}_{0}(t)=0 \\
& \ddot{x}_{1}(t)=-2 \dot{x}_{0}(t)-x_{0}(t) .
\end{aligned}
$$

For the initial conditions we obtain

$$
\begin{array}{ll}
x_{0}(0)=0, & \dot{x}_{0}(0)=1 \\
x_{1}(0)=0, & \dot{x}_{1}(0)=-1
\end{array}
$$

Note here that we have an inhomogeneous initial condition for \dot{x}_{1}, as the right hand side of the initial condition for the velocity \dot{x} contains terms of order ε.

Solving now first for x_{0}, we obtain the solution $x_{0}(t)=t$. Inserted into the second equation, this leads to the equation

$$
\ddot{x}_{1}(t)=-2-t
$$

from which we get $x_{1}(t)=-\left(\frac{1}{6} t^{3}+t^{2}+t\right)$. Hence,

$$
x(t)=t-\varepsilon\left(\frac{1}{6} t^{3}+t^{2}+t\right)+\mathcal{O}\left(\varepsilon^{2}\right)
$$

2 We assume $y=y_{0}+\varepsilon y_{1}+\cdots$, which we insert into the equation before collecting the terms of the same order up to order ε, and get

$$
\left(\dot{y}_{0}-y_{0}\right)+\varepsilon\left(\dot{y}_{1}-y_{1}-y_{0}^{2} \mathrm{e}^{-t}\right)+\mathcal{O}\left(\varepsilon^{2}\right)=0
$$

We hence get the following equations for y_{0} and y_{1} :

$$
\begin{aligned}
& \dot{y}_{0}(t)-y_{0}(t)=0 \\
& \dot{y}_{1}(t)-y_{1}(t)=y_{0}^{2}(t) \mathrm{e}^{-t}
\end{aligned}
$$

For the initial conditions, we have $y_{0}(0)=1$ and $y_{1}(0)=0$.
Solving first for y_{0}, we get $y_{0}(t)=\mathrm{e}^{t}$, which inserted into the second equation leads to

$$
\dot{y}_{1}(t)-y_{1}(t)=\mathrm{e}^{t} .
$$

Multiplying both sides of the equation with e^{-t}, we get

$$
\frac{d}{d t}\left(\mathrm{e}^{-t} y_{1}(t)\right)=1
$$

so that

$$
\mathrm{e}^{-t} y_{1}(t)=t+C
$$

From the initial condition we find $C=0$, and thus

$$
y_{1}(t)=t e^{t}
$$

Collecting everything, we obtain the approximation

$$
y(t)=\mathrm{e}^{t}+\varepsilon t \mathrm{e}^{t}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

3 Inserting the ansatz for ϑ into the ODE, we obtain the equation

$$
\omega^{2}\left(\ddot{\vartheta}_{0}+\varepsilon \ddot{\vartheta}_{1}+\cdots\right)=-\frac{1}{\varepsilon} \sin \left(\varepsilon\left(\vartheta_{0}+\varepsilon \vartheta_{1}+\cdots\right)\right) .
$$

Using a Taylor series expansion of sin and our assumption on ω, this leads to

$$
\begin{aligned}
&\left(1+\varepsilon \omega_{1}+\varepsilon^{2} \omega_{2}+\cdots\right)^{2}\left(\ddot{\vartheta}_{0}+\varepsilon \ddot{\vartheta}_{1}+\varepsilon^{2} \ddot{\vartheta}_{2}+\cdots\right) \\
&=-\left(\vartheta_{0}+\varepsilon \vartheta_{1}+\varepsilon^{2} \vartheta_{2}+\cdots\right)+\frac{1}{6} \varepsilon^{2}\left(\vartheta_{0}+\varepsilon \vartheta_{1}+\cdots\right)^{3}+\cdots
\end{aligned}
$$

or

$$
\begin{aligned}
& \ddot{\vartheta}_{0}+\varepsilon\left(2 \omega_{1} \ddot{\vartheta}_{0}+\ddot{\vartheta}_{1}\right)+\varepsilon^{2}\left(\left(2 \omega_{2}+\omega_{1}^{2}\right) \ddot{\vartheta}_{0}+2 \omega_{1} \ddot{\vartheta}_{1}+\ddot{\vartheta}_{2}\right)+\cdots \\
&=-\vartheta_{0}-\varepsilon \vartheta_{1}-\varepsilon^{2}\left(\vartheta_{2}-\frac{1}{6} \vartheta_{0}^{3}\right)-\cdots .
\end{aligned}
$$

For the initial conditions, we see that we only obtain homogeneous initial conditions apart for the conditions for ϑ_{0}. Thus we obtain the following equations:

$$
\begin{aligned}
\mathcal{O}(1): & \ddot{\vartheta}_{0}=-\vartheta_{0} ; \quad \vartheta_{0}(0)=1, \quad \dot{\vartheta}_{0}(0)=0 \\
\mathcal{O}(\varepsilon): & 2 \omega_{1} \ddot{\vartheta}_{0}+\ddot{\vartheta}_{1}=-\vartheta_{1} ; \quad \vartheta_{1}(0)=0, \quad \dot{\vartheta}_{1}(0)=0 \\
\mathcal{O}\left(\varepsilon^{2}\right): & \left(2 \omega_{2}+\omega_{1}^{2}\right) \ddot{\vartheta}_{0}+2 \omega_{1} \ddot{\vartheta}_{1}+\ddot{\vartheta}_{2}=-\vartheta_{2}+\frac{1}{6} \vartheta_{0}^{3} ; \quad \vartheta_{2}(0)=0, \quad \dot{\vartheta}_{2}(0)=0
\end{aligned}
$$

From the first equation, we obtain that

$$
\vartheta_{0}(t)=\cos t
$$

Inserting this into the second equation, we further obtain

$$
\ddot{\vartheta}_{1}+\vartheta_{1}=2 \omega_{1} \cos t
$$

with homogeneous initial conditions $\vartheta_{1}(0)=0$ and $\dot{\vartheta}_{1}(0)=0$. The solution of this equation is

$$
\vartheta_{1}(t)=\omega_{1} t \sin t
$$

Unless $\omega_{1}=0$, this is a secular term. As a consequence, we have to choose $\omega_{1}=0$ and $\vartheta_{1}=0$.
Next we continue with the equation for ϑ_{2}. We have

$$
\begin{align*}
\ddot{\vartheta}_{2}+\vartheta_{2} & =\frac{1}{6} \vartheta_{0}^{3}-\left(2 \omega_{2}+\omega_{1}^{2}\right) \ddot{\vartheta}_{0}-2 \omega_{1} \ddot{\vartheta}_{1} \\
& =\frac{1}{6} \cos ^{3} t+2 \omega_{2} \cos t \\
& =\frac{1}{6} \frac{1}{4}(3 \cos t+\cos 3 t)+2 \omega_{2} \cos t \\
& =\frac{1}{24} \cos 3 t+\left(\frac{3}{24}+2 \omega_{2}\right) \cos t \tag{1}
\end{align*}
$$

The homogeneous solution of this equation is $\cos t$. Similarly as for the determination of ω_{1}, we obtain that the only way of avoiding secular terms is by setting $\omega_{2}=-\frac{1}{16}$; then the right hand side of the ODE simplifies to $\frac{1}{24} \cos 3 t$, and we do not have any resonance with the homogeneous solution.
We thus obtain the equation

$$
\ddot{\vartheta}_{2}+\vartheta_{2}=\frac{1}{24} \cos 3 t
$$

with homogeneous initial conditions. The solution of this equation is

$$
\vartheta_{2}(t)=\frac{1}{192}(\cos t-\cos 3 t)
$$

We thus obtain the approximations

$$
\begin{aligned}
\vartheta(t) & =\vartheta_{0}(t)+\mathcal{O}(\varepsilon) \\
& =\cos (t)+\mathcal{O}(\varepsilon)
\end{aligned}
$$

and

$$
\begin{aligned}
\vartheta(t) & =\vartheta_{0}\left(\left(1-\frac{\varepsilon^{2}}{16}\right) t\right)+\varepsilon^{2} \vartheta_{2}\left(\left(1-\frac{\varepsilon^{2}}{16}\right) t\right)+\mathcal{O}\left(\varepsilon^{3}\right) \\
& =\cos \left(\left(1-\frac{\varepsilon^{2}}{16}\right) t\right)+\frac{\varepsilon^{2}}{192}\left[\cos \left(\left(1-\frac{\varepsilon^{2}}{16}\right) t\right)-\cos \left(3\left(1-\frac{\varepsilon^{2}}{16}\right) t\right)\right]+\mathcal{O}\left(\varepsilon^{3}\right)
\end{aligned}
$$

for every $t>0$ (actually, because of the symmetry with respect to ε, the approximation is of order $\left.\mathcal{O}\left(\varepsilon^{4}\right)\right)$. Note that there are no unbounded/secular terms anymore. Thus the error remains bounded for all $t>0 .{ }^{1}$

[^0]
[^0]: ${ }^{1}$ We still cannot expect that the approximations converge uniformly on $\mathbb{R}_{\geq 0}$ to the actual solution as $\varepsilon \rightarrow 0$. Indeed, the difference between the periods of the actual solution and our approximation is $\omega-\omega_{0}-\varepsilon^{2} \omega_{2}=\mathcal{O}\left(\varepsilon^{4}\right)$ (the period ω is symmetric in ε and thus the third order term vanishes). Thus, at a time $t \sim 1 / \varepsilon^{4}$, the true solution and the approximation will be off by half a period and the approximation error will be of size ~ 1. However, for times $t \ll 1 / \varepsilon^{4}$ we can expect a very good approximation to the true solution. In contrast, with the "standard" asymptotic expansion we obtain the secular error term that increases with $t \varepsilon^{2}$. Thus the "standard" approximation is only useful for $t \ll 1 / \varepsilon^{2}$.

