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Solutions to exercise set 3

1 Inserting x = x0 + εx1 + ε2x2 + · · · into the equation and collecting terms of the
same order of ε, we get

ẍ0 + ε (ẍ1 + 2ẋ0 + x0) + ε2 (ẍ2 + 2ẋ1 + x1) + . . . = 0.

We hence get the following equations for x0 and x1:

ẍ0(t) = 0,

ẍ1(t) = −2ẋ0(t)− x0(t).

For the initial conditions we obtain

x0(0) = 0, ẋ0(0) = 1,

x1(0) = 0, ẋ1(0) = −1.

Note here that we have an inhomogeneous initial condition for ẋ1, as the right hand
side of the initial condition for the velocity ẋ contains terms of order ε.

Solving now first for x0, we obtain the solution x0(t) = t. Inserted into the second
equation, this leads to the equation

ẍ1(t) = −2− t,

from which we get x1(t) = −
(
1
6 t

3 + t2 + t
)
. Hence,

x(t) = t− ε

(
1

6
t3 + t2 + t

)
+O(ε2).

2 We assume y = y0 + εy1 + · · · , which we insert into the equation before collecting
the terms of the same order up to order ε, and get

(ẏ0 − y0) + ε
(
ẏ1 − y1 − y20e−t

)
+O(ε2) = 0.

We hence get the following equations for y0 and y1:

ẏ0(t)− y0(t) = 0,

ẏ1(t)− y1(t) = y20(t)e−t.

For the initial conditions, we have y0(0) = 1 and y1(0) = 0.

Solving first for y0, we get y0(t) = et, which inserted into the second equation leads
to

ẏ1(t)− y1(t) = et.
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Multiplying both sides of the equation with e−t, we get

d

dt

(
e−ty1(t)

)
= 1.

so that
e−ty1(t) = t + C.

From the initial condition we find C = 0, and thus

y1(t) = tet.

Collecting everything, we obtain the approximation

y(t) = et + εtet +O(ε2).

3 Inserting the ansatz for ϑ into the ODE, we obtain the equation

ω2(ϑ̈0 + εϑ̈1 + · · · ) = −1

ε
sin

(
ε(ϑ0 + εϑ1 + · · · )

)
.

Using a Taylor series expansion of sin and our assumption on ω, this leads to

(1 + εω1 + ε2ω2 + · · · )2(ϑ̈0 + εϑ̈1 + ε2ϑ̈2 + · · · )

= −(ϑ0 + εϑ1 + ε2ϑ2 + · · · ) +
1

6
ε2(ϑ0 + εϑ1 + · · · )3 + · · · ,

or

ϑ̈0 + ε(2ω1ϑ̈0 + ϑ̈1) + ε2((2ω2 + ω2
1)ϑ̈0 + 2ω1ϑ̈1 + ϑ̈2) + · · ·

= −ϑ0 − εϑ1 − ε2
(
ϑ2 −

1

6
ϑ3
0

)
− · · · .

For the initial conditions, we see that we only obtain homogeneous initial conditions
apart for the conditions for ϑ0. Thus we obtain the following equations:

O(1) : ϑ̈0 = −ϑ0; ϑ0(0) = 1, ϑ̇0(0) = 0

O(ε) : 2ω1ϑ̈0 + ϑ̈1 = −ϑ1; ϑ1(0) = 0, ϑ̇1(0) = 0

O(ε2) : (2ω2 + ω2
1)ϑ̈0 + 2ω1ϑ̈1 + ϑ̈2 = −ϑ2 +

1

6
ϑ3
0; ϑ2(0) = 0, ϑ̇2(0) = 0

...

From the first equation, we obtain that

ϑ0(t) = cos t.

Inserting this into the second equation, we further obtain

ϑ̈1 + ϑ1 = 2ω1 cos t

with homogeneous initial conditions ϑ1(0) = 0 and ϑ̇1(0) = 0. The solution of this
equation is

ϑ1(t) = ω1t sin t.
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Unless ω1 = 0, this is a secular term. As a consequence, we have to choose ω1 = 0
and ϑ1 = 0.

Next we continue with the equation for ϑ2. We have

ϑ̈2 + ϑ2 =
1

6
ϑ3
0 − (2ω2 + ω2

1)ϑ̈0 − 2ω1ϑ̈1

=
1

6
cos3 t + 2ω2 cos t

=
1

6

1

4
(3 cos t + cos 3t) + 2ω2 cos t

=
1

24
cos 3t +

( 3

24
+ 2ω2

)
cos t.(1)

The homogeneous solution of this equation is cos t. Similarly as for the determination
of ω1, we obtain that the only way of avoiding secular terms is by setting ω2 = − 1

16 ;
then the right hand side of the ODE simplifies to 1

24 cos 3t, and we do not have any
resonance with the homogeneous solution.

We thus obtain the equation

ϑ̈2 + ϑ2 =
1

24
cos 3t

with homogeneous initial conditions. The solution of this equation is

ϑ2(t) =
1

192

(
cos t− cos 3t

)
.

We thus obtain the approximations

ϑ(t) = ϑ0(t) +O(ε)

= cos(t) +O(ε)

and

ϑ(t) = ϑ0

((
1− ε2

16

)
t
)

+ ε2ϑ2

((
1− ε2

16

)
t
)

+O(ε3)

= cos
((

1− ε2

16

)
t
)

+
ε2

192

[
cos

((
1− ε2

16

)
t
)
− cos

(
3
(

1− ε2

16

)
t
)]

+O(ε3)

for every t > 0 (actually, because of the symmetry with respect to ε, the approxima-
tion is of order O(ε4)). Note that there are no unbounded/secular terms anymore.
Thus the error remains bounded for all t > 0.1

1We still cannot expect that the approximations converge uniformly on R≥0 to the actual solution
as ε → 0. Indeed, the difference between the periods of the actual solution and our approximation is
ω−ω0− ε2ω2 = O(ε4) (the period ω is symmetric in ε and thus the third order term vanishes). Thus, at a
time t ∼ 1/ε4, the true solution and the approximation will be off by half a period and the approximation
error will be of size ∼ 1. However, for times t � 1/ε4 we can expect a very good approximation to the
true solution. In contrast, with the “standard” asymptotic expansion we obtain the secular error term
that increases with tε2. Thus the “standard” approximation is only useful for t� 1/ε2.
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