TMA4195 Mathematical Modelling Autumn 2019
Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 (Exercise 2a p. 298 in Lin \& Segel)
Find leading order outer, inner and uniform solutions to the following problem. (Assume that ε is small and positive and that the boundary layer is at $x=0$.)

$$
\begin{aligned}
\varepsilon y^{\prime \prime}+(1+x) y^{\prime}+y & =0 \\
y(0) & =0 \\
y(1) & =1 .
\end{aligned}
$$

2 (Exercise 2b p. 298 in Lin \& Segel)
Find leading order outer, inner and uniform solutions to the following problem. (Assume that ϵ is small and positive and that the boundary layer is at $x=0$.)

$$
\begin{aligned}
\epsilon y^{\prime \prime}+y^{\prime}+y^{2} & =0 \\
y(0) & =\frac{1}{4} \\
y(1) & =\frac{1}{2} .
\end{aligned}
$$

3 (Exercise 5 p. 299 in Lin \& Segel)
Use singular perturbation theory to obtain leading order outer, inner, and uniform solutions of the problem

$$
\epsilon u^{\prime \prime}-\left(2-x^{2}\right) u=-1, \quad u(-1)=u(1)=0
$$

REMARK. It is sufficient to solve the differential equation on $(0,1)$ subject to the boundary conditions $u^{\prime}(0)=0$ and $u(1)=0$. Why?

