TMA4195 Mathematical Modelling Autumn 2019
Norwegian University of Science and Technology

Solutions to exercise set 4
Department of Mathematical
Sciences

1 We are going to study the boundary problem

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+(1+x) y^{\prime}+y=0, \quad y(0)=0, \quad y(1)=1 \tag{1}
\end{equation*}
$$

where $0<\varepsilon \ll 1$. Let us introduce the notation $y=y_{0}+\varepsilon y_{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ for the outer approximation and $Y=Y_{0}+\varepsilon Y_{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ for the inner approximation. From the exercise we know that the boundary layer lies at $x=0$. Let us call the uniform approximation y^{u}.
To find the outer approximation, we plug in the series expansion of y into (1) and find

$$
(1+x) y_{0}^{\prime}+y_{0}+\varepsilon\left[y_{0}^{\prime \prime}+(1+x) y_{1}^{\prime}+y_{1}\right]=\mathcal{O}\left(\varepsilon^{2}\right) .
$$

We can fix y_{0} using the equation $y_{0}^{\prime}(1+x)+y_{0}=0$. This equation has general solution of the form $y_{0}=C /(1+x)$. If we use the initial condition $y(0)=0$ for fixing C, we get $y_{0} \equiv 0$. With further computations we will see that this solution can not be used as the inner solution. Since the boundary layer lies at $x=0$, we are going to use the initial condition at $x=1$ for the outer approximation. Thus, asking that $y_{0}(1)=1$, we get $C=2$. The leading order for the outer approximation is

$$
y(x) \approx y_{0}(x)=\frac{2}{1+x} .
$$

To find the inner approximation Y, we scale x such that the new variable varies between 0 and 1 close to the boundary layer. Let us set $\xi=x / \varepsilon$ and obtain, using (1),

$$
\begin{equation*}
\frac{d^{2} Y}{d \xi^{2}}+\frac{d Y}{d \xi}+\varepsilon\left(\xi \frac{d Y}{d \xi}+Y\right)=0 \tag{2}
\end{equation*}
$$

Let us plug in the series expansion for Y into (2) and gather together the terms having same order. We get the following equation

$$
\ddot{Y}_{0}+\dot{Y}_{0}+\varepsilon\left(\ddot{Y}_{1}+Y_{1}+\xi \dot{Y}_{0}+Y_{0}\right)=\mathcal{O}\left(\varepsilon^{2}\right)
$$

where \dot{Y} means derivation with respect to ξ. We assume that this approximation is good near $\xi=0$. We use the initial condition $Y(0)=0$, that gives us $Y_{0}(0)=0$. The initial term in the expansion of Y can be derived from the equation $\ddot{Y}_{0}+\dot{Y}_{0}=0$. Using the initial condition $Y_{0}(0)=0$, we get $Y_{0}=K\left(1-\mathrm{e}^{-\xi}\right)$.
We have to match the inner and outer approximation. This can be done for Y_{0} and y_{0} by setting

$$
\lim _{\xi \rightarrow \infty} Y(\xi)=\lim _{x \rightarrow 0} y(x),
$$

which gives $K=2$. The uniform approximation can be found summing together inner and outer and subtracting from their sum the common terms. This returns

$$
y^{u}(x)=y(x)+Y(x / \varepsilon)-2=\frac{2}{1+x}-2 \mathrm{e}^{-x / \varepsilon} .
$$

If we had used the initial condition $y(0)=0$ instead of $y(1)=1$, we would have found $y=0$ and $K=0 \Rightarrow Y=0$. The uniform approximation would have been $y^{u}=0$, which is clearly wrong. It is therefore right to use the initial condition $y(1)=1$.

2 We begin by finding the outer solution. The boundary layer is given to be at $x=0$. We neglect the $\epsilon y^{\prime \prime}$ term and obtain the boundary value problem for the outer solution

$$
y_{O}^{\prime}+y_{O}^{2}=0, \quad y(1)=\frac{1}{2} .
$$

The solution is $y_{O}(x)=\frac{1}{x+1}$.
To find the inner solution we scale $x=\delta \xi$ and let $Y(\xi)=y(x)$. The chain rule gives then

$$
\frac{\epsilon}{\delta^{2}} Y^{\prime \prime}+\frac{1}{\delta} Y^{\prime}+Y^{2}=0, \quad Y(0)=\frac{1}{4}
$$

We choose $\delta=\epsilon$ and multiply the equation by ϵ. This gives

$$
Y^{\prime \prime}+Y^{\prime}+\epsilon Y^{2}=0
$$

The leading order solution can be found by solving $Y_{I}^{\prime \prime}+Y_{I}^{\prime}=0, Y_{I}(0)=\frac{1}{4}$. The solution is $Y_{I}(\xi)=C_{1}+C_{2} e^{-\xi}$ with $C_{1}+C_{2}=\frac{1}{4}$. We use the matching requirement to find C_{1} and C_{2}. To that end let $\Theta(\epsilon)$ be such that

$$
\lim _{\epsilon \downarrow 0} \Theta(\epsilon)=0, \quad \lim _{\epsilon \downarrow 0} \frac{\Theta(\epsilon)}{\delta(\epsilon)}=\infty .
$$

The matching requirement can be formulated

$$
\lim _{\epsilon \downarrow 0} y_{O}(\eta \Theta(\epsilon))=\lim _{\epsilon \downarrow 0} Y_{I}\left(\frac{\eta \Theta(\epsilon)}{\delta(\epsilon)}\right),
$$

for all $\eta>0$. This gives

$$
C_{1}+C_{2} e^{-\infty}=1,
$$

and thus $C_{1}=1, C_{2}=-\frac{3}{4}$. The uniform approximation is then given by

$$
\begin{aligned}
y_{u}(x) & =y_{O}(x)+Y_{I}\left(\frac{x}{\delta}\right)-\lim _{\epsilon \downarrow 0} y_{O}(\eta \Theta(\epsilon)) \\
& =\frac{1}{x+1}-\frac{3}{4} e^{-\frac{x}{\epsilon}} .
\end{aligned}
$$

3 First we note that by the symmetry in the problem, u has to be an even function. To see this let $v(x)=u(-x)$ and observe that both v and u satisfies the equation. As u is even we have that $u^{\prime}(-x)=-u^{\prime}(x)$. Continuity of u^{\prime} at 0 gives that $u^{\prime}(0)=0$ is the correct boundary condition.
By looking at the equation and boundary conditions we observe that for $x \approx 1$, $\epsilon u^{\prime \prime} \approx-1$. Hence $\left|u^{\prime \prime}\right| \gg 1$ there, and if $u \sim \frac{1}{2}$ for x close to $0, u^{\prime \prime}$ must be of order 1

Figure 1: The path Θ in the plane.

close to $x=0$. This means that we should use a boundary layer around $x=1$. First we find the outer solution u_{O}. We neglect the term $\epsilon u^{\prime \prime}$ in the equation and obtain

$$
\left(2-x^{2}\right) u_{O}=1, \text { or } u_{O}(x)=\frac{1}{2-x^{2}}
$$

We see that $u_{O}^{\prime}(0)=0$. Now we turn to the inner solution. Rescale $x=1-\delta \xi$ and $U(\xi)=u(x)$. This implies $\frac{1}{\delta^{2}} U^{\prime \prime}(\xi)=u^{\prime \prime}(x)$, which gives the equation

$$
\begin{aligned}
\frac{\epsilon}{\delta^{2}} U^{\prime \prime}-\left(2-(1-\delta \xi)^{2}\right) U & =-1 \\
\frac{\epsilon}{\delta^{2}} U^{\prime \prime}-(1+\mathcal{O}(\delta)) U & =-1
\end{aligned}
$$

We balance the terms by choosing $\delta=\epsilon^{\frac{1}{2}}$. The linear ODE has general solution $U(\xi)=c_{1} e^{\xi}+c_{2} e^{-\xi}+1$. To determine c_{1} and c_{2} we need two boundary conditions. Observe first that $\xi=0$ corresponds to $x=1$. Thus $U(0)=u(1)=0$, and the first equation is

$$
c_{1}+c_{2}+1=0
$$

We want the inner solution U and the outer solution u to match in a nice manner. That is, the transition from outside to inside the boundary layer should be continuous when $\epsilon \downarrow 0$. But as $\epsilon \downarrow 0$ the boundary layer shrinks as well. Let $\Theta(\epsilon)$ be a path in the plane such that $\Theta(\epsilon) \rightarrow 0$ as $\epsilon \downarrow 0$. The idea is to choose Θ such that for each $\epsilon>0$ the function value $\Theta(\epsilon)$ lies in the intermediate region, at least for small ϵ. This happens if $\lim _{\epsilon \downarrow 0} \frac{\Theta(\epsilon)}{\delta(\epsilon)}=\infty$. See Figure 3. To sum up we have the following
conditions on the function Θ

$$
\lim _{\epsilon \downarrow 0} \Theta(\epsilon)=0, \quad \lim _{\epsilon \downarrow 0} \frac{\Theta(\epsilon)}{\delta(\epsilon)}=\infty
$$

The nice behaviour across the boundary layer can be formulated

$$
\lim _{\epsilon \downarrow 0} u_{O}(1-\eta \Theta(\epsilon))=\lim _{\epsilon \downarrow 0} U\left(\frac{\eta \Theta(\epsilon)}{\delta(\epsilon)}\right),
$$

for any parameter $\eta>0$. In our case the left hand side will be equal to one. Thus

$$
\lim _{\epsilon \downarrow 0} c_{1} e^{\frac{\eta \Theta}{\sqrt{\epsilon}}}+c_{2} e^{-\frac{\eta \Theta}{\sqrt{\epsilon}}}=1-1=0 .
$$

This gives $c_{1}=0$ (or the exponential would go to infinity due to the limit of $\frac{\Theta}{\delta}$) and we get $c_{2}=-1$. The uniform approximation is then given by

$$
u_{u}(x)=\frac{1}{2-x^{2}}+1-e^{-\frac{1-x}{\sqrt{\epsilon}}}-\lim _{\epsilon \downarrow 0} u_{O}(1-\eta \Theta)=\frac{1}{2-x^{2}}-e^{-\frac{1-x}{\sqrt{\epsilon}}}
$$

