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We consider the differential equation

CC% =u?(u? - 1).

whose equilibrium solutions are
flu)=u*W?-1)=0 = wy=-1, u =0, up=1.

Let us study ug. To show it is stable, we introduce a small perturbation y(¢). That
is:
u(t) = up + y(t).
After having plugged it in the original equation, we get
d 1
S = fluo) + 1" (uo)y + 5" (wo)y® + -+ .
dt < — 2
=0
Let us focus on the terms of order smaller than 1
dy ’
o =/ (wo)y
whose solution is
y(t) = Ce™ with a = f'(up)

Thus, if a < 0, the perturbation y disappears with time and the equilibrium solution
ug is asymptotic stable. If o > 0, the perturbation increases with time and the
equilibrium solution is unstable. In our case

f(ug) = 4u% — 2ug = —2,

Therefore ug is a stable equilibrium solution. In the same way we can study the
equilibrium solution us. We find that

f'(ug) =2

and ug is unstable. For u; we get f’(u1) = 0, so we need to consider further terms
in the Taylor expansion. Let us add the second one. The equation

dy _ 1., 2 _ 2
a §f (u1)y” =~y
has general solution
()= o
Wk

If we start for t = 0 with a small negative value for y, the constant C' becomes
negative and the solution blows up whenever ¢ — —C. Therefore u; is unstable.
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(a) The equilibrium points are given by

Ug = p
d—u—o = = >0
dt_ Ul_\/ﬁv m =
UQZ—\/,E, ,U’ZO

We have two bifurcation points, i.e. points where the solution curves intersect.
These points are given by u = =£,/u, that is the two bifurcation points are
(0,0),(1,1). To say something about stability, we first calculate

f'(u) = 3u® = 2pu —
By plugging in the expression for the equilibrium solutions we get
f(uo) = p(p—1)
f(ur) = 2u(1 = /1)
f'(u2) = 2u(1 + /)

We see that ug is always unstable, uo is stable for p > 1 and wu; is stable when
0 < u < 1. We see that the stability changes at the bifurcation points. See
Figure 1 for the sketch of the bifurcation diagram.

(b) The equilibrium points are given by

u0:0

du

-0 = qu=9u p#0
ug3=1xp+1, p=>-1

The branching diagram is showed in figure 2.

From the diagram we see that we have two bifurcation points, i.e. points where
the solution curves intersect. These points are given by

1—+v/p+1=0
1+/p+1=9/p

Hence the bifurcation points are (u,u) = {(0,0), (3,3)}.
To say something about stability, we first calculate

F(u) = (9 — pu) (s + 2u — ) — pulp + 20 — w?) + 2u(9 — pu)(1 - u)

By plugging in the expression for the equilibrium solutions we get

9
=2l - 3)(1® + 3y + 27)

f/(u2):2(1—\/m) [9—u(1—\/ﬂ+1)} Vi1
f’(uS):—2<1+\/;m) [9—M<1+\/ﬂ+1>] Vi1
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Figure 1: Bifurcation diagram 2.2 (a).

By sketching a sign line for the expression on the right hand side we find that

. stable for p <0
ug is
unstable for p > 0,
. stable for p >3
u is
unstable for p € (—o0,0) U (0, 3),
. | stable for p >0
ug is
unstable for u € (—1,0),

.| stable for pe€ (—1,3)
us i
° unstable for p > 3.

We see from this that the stability changes in the bifurcation points.
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ujp

us

Ug

ujp

Figure 2: Branching diagram 2.2 (b).

We are given the equation

dec 0%

(1) 5 8x2+c( ¢), t>0, xze€

a) We linearize the equation around ¢ = 0. It is more transparent to write the
equation as

¢t = Czp + q(0).
The only term we need to linearize is ¢, since the other terms are already linear:
q(c) = q(0) +¢'(0)ce=0+1-c=c
and hence the linearized equation is
(2) Ct = Cgp T C,

where we have set ¢ := ¢p(x,t). We thus have k = 1.

b) We can solve the linearized equation in many ways, but following the hint, we
want to transform it to the heat equation. We do this using an integrating
factor. Let ¢ = e ¥ ¢ and note that

—C = eikt(ct — ke) = e Mty = Con.

ot

This can be solved by convolution with the fundamental solution cp:

¢= ok ep = / ey, 0)er(z — 3, H)dy.

—00
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We then get
o0
cr(x,t) = ekté(m, t) = ekt/ co(y)erp(x —y, t)dy,
— 00

where we note that &(y,0) = e %¢(y, 0) = co(y).
Inserting the given solution of the fundamental solution cr, we get

cr(z,t) = ekt /OO co(y)

1 _(z—y)?

e 1t dy.
VAt Y

Using the hint, we calculate

oo
ler, — 0] < ekt/ lco(y)|er(z — y,t)dy < e max|co(x)| - 1 = e max|co(x) — 0].
— 0o z€R z€R
The equilibrium points of (1) are its constant solutions, and if ¢ = cg is a
constant solution of (1), then (cg): = (¢p)ze = 0 and ¢(cg) = cp(cp — 1) = 0.
The solutions/equilibrium points are therefore cg = 0 and cg = 1.

To study the stability of the equilibrium points c¢g, we check whether solutions
of the equation linearized arond cg that start near cg remain near for all times.
To do that, let

c(x,t) =cp + é(x, t)

and note that if ¢ is not so big, then

¢t = Cpx + q(cp + ¢) = G + q(cg) + ¢ (cE)c.
Note that ¢(cg) = 0 and let ¢ be the solution of the linearized equation
(3) ¢t = czz + ¢ (cE)e.

This linearized equation only has the equilibrium point ¢ = 0 (since ¢’ # 0).
By definition we say that cg is a stable(/unstable) equilibrium point of the
original non-linear equation according to linear stability analysis if ¢ = 0 is a
stable(/unstable) equilibrium point of the linearized equation 3.

We solve equation (3) and c¢(z,0) = ¢o(x) as in part b), this time with using
the integrating factor e~ 7 (ce)t:

olat) = e [ coly)ero — y,)dy.
R
Note that if |co(x) — 0] = |co| < 6, then

lé(z,t) — 0] < max lco(2) — 0] < ded ()t
z€

Hence it follows that ¢ = 0 is a stable equilibrium point if ¢’(c.) < 0 since then
small perturbations remain small for all times. On the other hand, if ¢’(c.) > 0,
then ¢ = 0 is not stable any more since we can find small perturbations that
blows up in time. Take e.g. ¢g = § and check that

ez, t) = e (% 5 o as t — oo.

We compute ¢’ and find that ¢/(0) = 1 > 0 and ¢'(1) = —1 < 0. From the
discussion above we can then conclude according to linear stability analysis
that ¢g = 0 is unstable while cg = 1 is stable.
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