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Problem 1 Consider the initial value problem

mÿ∗ = −λ(ẏ∗)3 − ky∗, (1)
y∗(0) = 0,
ẏ∗(0) = v0,

which models a spring pendulum of mass m, spring constant k, and cubic damping
with damping parameter λ, which is perturbed from its equilibrium position with
initial velocity v0 6= 0.

Propose a rescaling for this equation that is valid for times close to zero based
on the assumption that the first two terms in (1) (acceleration and damping)
dominate. Under which condition does this yield a reasonable scaling?

Possible solution

• After rescaling with scales y = Y y∗ and t = Tt∗, we will obtain the ODE

mY

T 2 ÿ = −λY
3

T 3 ẏ
3 − kY y,

y(0) = 0,
Y

T
ẏ(0) = v0.

At times close to zero, we can expect the velocity to be close to v0 and the
position to be approximately 0. In order to obtain a well-scaled velocity, we
should choose Y and T such that

Y

T
= v0.

Balancing the first two terms then yields the condition

mY

T 2 = mv0
1
T
≈ λ

Y 3

T 3 = λv3
0.

This suggests the time scale

T = mv0

λv3
0

= m

λv2
0
.

For the spatial scale Y this implies

Y = Tv0 = m

λv0
.
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As a consequence, we obtain the rescaled equation

ÿ = −ẏ3 − κy with κ = km

λv4
0
.

As long as the parameter κ is small or at most of order 1, this scaling makes
sense. If, however, κ� 1 (we have a high initial velocity and low damping),
the basic assumption that ÿ ∼ ẏ can only hold if y � 1. Thus either the
balancing assumption is incorrect in that case, or the solution is badly scaled.

Problem 2 Consider the differential equation

εy′′ + y′ = y + y3

1 + 3y2

with boundary conditions y(0) = 0 and y(1) = 1. Find leading order outer, inner
and uniform solutions for small ε > 0 using the fact that there is a boundary layer
at x = 0.

Hint: It is enough to provide an implicit form for the outer solution.

Possible solution

• For the outer solution, we have to solve the equation

y′ = y + y3

1 + 3y2 .

This can be rewritten as
1 + 3y2

y + y3 dy = dx,

which integrates to
ln(y(1 + y2)) = C + x

for some constant C, which is determined by the boundary condition y(1) =
1. A simple computation yields

C = ln 2− 1.

That is, the outer solution is the unique solution of the equation

yo(x)(1 + yo(x)2) = 2ex−1.
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• Next we need to find a correct scale for the boundary layer. To that end we
rescale the equation by setting x = δξ and set Y (ξ) := y(x). After rescaling,
we will obtain

ε

δ2Y
′′ + 1

δ
Y ′ = Y + Y 3

1 + 3Y 2 .

We try to match the terms on the right hand side setting δ = ε and obtain
the rescaled equation

Y ′′ + Y ′ = ε
Y + Y 3

1 + 3Y 2 .

• Next we solve the approximation to the inner equation
Y ′′ + Y ′ = 0

with boundary condition Y (0) = 0. The general solution is of the form
Y (ξ) = D + Ee−ξ.

With the boundary condition Y (0) = 0, we obtain
Y (ξ) = D(1− e−ξ)

• In order to match the solutions, we have to choose D such that
lim
ξ→∞

Y (ξ) = lim
x→0+

y(x).

We have
lim
ξ→∞

Y (ξ) = D

and
lim
x→0+

(ln(y(x)(1 + y(x)2))) = C = ln 2.

That is,
lim
x→0+

y(x)(1 + y(x)2) = 2

and thus
lim
x→0+

y(x) = 1.

As a consequence,
D = 1,

and we have the inner solution
Y (ξ) = 1− e−ξ

and the uniform solution
y(x) = yo(x)− e−x/ε

where yo(x) solves
yo(x)(1 + yo(x)2) = 2ex−1.
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Problem 3 The maximal power P that a wind turbine can produce depends
on the density ρ of the air, the air velocity v, and the length r of its rotor blades.
The dimensions of these physical quantities are [P ] = kgm2/s3, [ρ] = kg/m3,
[v] = m/s, and [r] = m. Find the most general dimensionally consistent model for
the power P depending on the other physical quantities mentioned above.

Wind turbines start to operate only when a minimum output power is reached.
For air densities of approximately ρE ≈ 1.2kg/m3, which are typical at the surface
of the earth at medium temperatures, this happens at wind speeds of about vE ≈
4m/s.
In contrast, the air density on the surface of Mars is about ρM ≈ 2 · 10−2kg/m3,
and wind speeds are about 8m/s during a typical day, and about 20m/s during a
storm. Would a standard terrestian wind turbine operate during a typical martian
day or during a martian storm?

Possible solution

• We can assume a relation P = P (ρ, v, r) between the power P and the
other quantities. Since the only term on the right hand side that involves
kg is the density ρ, the dimensional consistency of the relation implies that
P = ρF (v, r) for some function F . Next, we observe that [F (v, r)] = [P/ρ] =
m5/s3. The only dimensionally consistent combination of v and r with this
dimension is F (v, r) = Kv3r2 for some constant K. Thus

P = Kρv3r2.

The atmosphere on Mars is about 60 times less dense than that of the earth.
In order to obtain the same power output, the wind speed has therefore to
be about 3

√
60 ≈ 4 times larger than on earth. That is, if a wind turbine

requires a minimum wind speed of 4m/s to work on earth, it would require a
wind speed of 16m/s on Mars. In other words, during a typical day it would
not work, but it would be perfectly fine during a storm.

Remarks

• The wind speeds given for Mars in this exercise are not completely accurate in
that they show large seasonal variations. During the Phoenix mission, aver-
age wind speeds were at first consistently around 4m/s, while they increased
to the cited 8m/s only in the later stages of that mission (see [HRGM+10]).



TMA4195 Mathematical Modelling, 18th December 2018 Page 5 of 13

Thus the chances for a green revolution on the red planet based on clean wind
energy are even slimmer than what the results of this problem indicate.

Problem 4 In order to control insect numbers, it has been suggested to main-
tain a stable number of sterile male insects in the population. The main idea is
that the sterile males compete with fertile males over females; however, if females
mate with the sterile males, no offspring is produced. This can effectively reduce
the reproduction rate of the insects.

We consider now specifically a model where the population of insects is described,
after rescaling, by the equation

∂N

∂t
= N2

N + S
− (κ+N + S)N

for some parameter 0 < κ < 1.

Determine the equilibrium states of the insect population as a function of S, and
discuss the stability of these equilibria. What is the smallest non-zero stable
population of insects that can be achieved according to this model?

Possible solution

• Write f(N,S) =
(

N
N+S −κ−N−S

)
N the right hand side of the ODE. Then

the equilibrium points of this ODE are the states N = 0 and the solutions
(if existent) of the equation N/(N + S)− κ−N − S = 0. The latter can be
rewritten as N2 + (κ+ 2S − 1)N + κS + S2 = 0, which has the solutions

N = 1− κ− 2S
2 ± 1

4
√

(1− κ− 2S)2 − 4κS − 4S2.

The term in the root can be simplified to (1− κ)2 − 4S. Thus we have

N± = 1− κ− 2S
2 ± 1

2
√

(1− κ)2 − 4S.

As a consequence, we have non-zero equilibrium points if and only if (1 −
κ)2 − 4S ≥ 0 or 4S ≤ (1− κ)2. Since 0 < κ < 1, we have always in this case
that 1 − κ − 2S > 0 and thus the non-zero equilibrium points are always
positive for S > 0. For S = 0, we have N+ = 1− κ and N− = 0.
Thus we have:
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– Two positive equilibria at N± for 0 < 4S ≤ (1− κ)2.
– One positive equilibrium at N+ = N− for 4S = (1− κ)2.
– No positive equilibria for 4S > (1− κ)2.
– Moreover, at the parameter 4S = (1 − κ)2 we have a regular turning

point.
– At S = 0, we have only one positive equilibrium point N+ = 1− κ.

In order to analyse the stability of the equilibria, we compute the derivative
of f(N,S) with respect to N :

∂Nf(N,S) =
(

N

N + S
− κ−N − S

)
+
( 1
N + S

− N

(N + S)2 − 1
)
N.

For N = 0 and S > 0 we obtain ∂Nf(0, S) = −κ − S < 0. Thus this
equilibrium point is asymptotically stable for S > 0. Since we have a regular
turning point at 4S = (1 − κ)2 (and one can verify that ∂Nf(N±, S) 6= 0)
it follows that the lower branch of the equilibria (the point N−) is unstable,
whereas the upper branch (the point N+) is asymptotically stable.
The function S 7→ N+ is concave, and therefore admits its minimum at the
boundary of the admissible interval [0, (1 − κ)2/4]. For S = 0 we obtain
a stable population of N+ = 1 − κ, and for S = (1 − κ)2/4 we obtain a
population of

N+ = 1− κ
2 − (1− κ)2

4 ,

which is obviously the smaller of the two possibilities and thus the smallest
achievable non-zero population.

Remarks

• The method discussed in this exercise is called sterile insect technique (see
[DHR05] for a rather large overview). Because of the seasonal dependence
of insect populations, they are usually modelled with difference equations
instead of differential equations (see [Bar05]); still, the general results of the
basic models are qualitatively similar. The basis of the model discussed in
this problem is the logistic equation

∂N

∂t
= αN − (β + γN)N,

which assumes a constant reproduction rate of the insects, but a death rate
that increases linearly with the population. The introduction of the sterile
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insect increases the population pressure and effectively decreases the repro-
duction rate from α to α N

N+S , since only a fraction of the females actually
mate with fertile males. This results in the model

∂N

∂t
= αN

N + S
N − (β + γ(N + S))N.

A more complicated model that takes into account different stages of the
development of the insects and also distinguishes between male and female
populations can be found in [ADL12].

Problem 5 This exercise is concerned with the formulation of a traffic flow
model for ant trails: As ants move along an established trail, they deposit a trail
pheromone, which slowly evaporates over time. This trail pheromone serves as an
orientation marker for the ants traveling along the trail.

Derive a PDE model for the ant density ρ(x, t) and pheromone concentration p(x, t)
along an infinitely long ant trail that is based on the “conservation of ants along
the trail” and the following assumptions:

• As each ant moves, it deposits a trail pheromone at a constant rate.

• The trail pheromone evaporates at a constant rate.

• There is a chance that an ant will lose the trail. The rate at which this
happens is a function f(p) depending on the pheromone concentration p.

• The speed of the ants is given by

v = v0(1 + αp)(ρmax − ρ)

for ant densities smaller than the maximal density ρmax.

Possible solution

• The amount of pheromones that are deposited is proportional to the ant
density. Because the evaporation rate is constant as well, the pheromones
can be modelled by the equation

∂tp(x, t) = αρ(x, t)− βp(x, t)
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for some constants α, β > 0. The modelling of ρ is based on the conservation
law for formicidae, which states that the change of the total amount of ants
in a piece [a, b] of the ant trail is equal to the number of incoming ants
through a minus the number of exiting ants through b minus the number of
ants lost
The ant flux J is equal to the ants’ velocity times their density, that is,

J(x, t) = v0(1 + αp(x, t))(ρmax − ρ(x, t))ρ(x, t).

The loss of ants in the interval [a, b] is given by

Q(x, [a, b]) = −
∫ b

a
f(p(x, t))ρ(x, t) dx.

Thus we obtain at the integral formulation

d

dt

∫ b

a
ρ(x, t) dx = J(a, t)− J(b, t)−

∫ b

a
f(p(x, t))ρ(x, t) dx.

Dividing by b − a and considering the limit b → a leads to the differential
form

∂tρ+ ∂x
(
v0(1 + αp)(ρmax − ρ)ρ

)
= −f(p)ρ.

Remarks

• The model discussed in this problem assumes that an ant trail has already
formed. However, it is also possible, though much more involved, to model
the formation of the trail itself. A PDE based model of the trail formation
has for instance been proposed and numerically analysed in [Amo15]. It is
also worth mentioning that the modeling of the ant velocity based on stan-
dard traffic models might be unrealistic. Experimental studies on Leptogenys
processionalis indicate that the density of ants on a trail has almost no effect
on their velocity [JSCN09].

Problem 6 A satellite that orbits the earth satisfies the system of equations

r̈ − rθ̇2 = −GM
r2 ,

d

dt

(
r2θ̇

)
= 0,
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where (r, θ) is the position of the satellite in polar coordinates (centered at the
center of the earth), G is the gravitational constant, and M the mass of the earth.
One possible solution of this system of equations is given by

r = a, θ̇ = ω, with a3ω2 = GM.

This describes a circular orbit at constant radius a and constant angular velocity
ω.

We now consider a small perturbation of that circular orbit and use a regular
perturbation of the form r = a+ εr1 + . . . and θ̇ = ω + εθ̇1 + . . . in order to find a
linearisation of this equation around the circular orbit. Find the equations for r1
and θ̇1, and verify that the radial term of the linearised solution has the general
form

r1(t) = A sin(ωt) +B cos(ωt) + C

and thus remains bounded for all time.

Possible solution

• We write r = a+ εr1 + ε2r2 + . . . and θ̇ = ω+ εθ̇1 + ε2θ̇2 + . . . and insert this
series into the equations.
Ignoring all terms of order ε2 or higher, we obtain for the first equation

(a2 + 2aεr1)εr̈1 − (a3 + 3a2εr1)(ω2 + 2ωεθ̇1) = −GM +O(ε2)

or
−a3ω2 + ε

(
a2r̈1 − 3a2ω2r1 − 2ωa3θ̇1

)
= −GM +O(ε2).

Since a3ω2 = GM , this simplifies to

r̈1 − 3ω2r1 − 2ωaθ̇1 = 0.

The second equation yields

d

dt

(
(a2 + 2εr1)(ω + εθ̇1

)
= O(ε2),

which simplifies to
ε(2aṙ1ω + a2θ̈1) = O(ε2)

or
2ṙ1ω + aθ̈1 = 0.
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This can be written as
aθ̇1 = C − 2ωr1

for some constant C. Inserting this into the first equation yields

r̈1 − 3ω2r1 + 4ω2r1 − 2ωC = 0

or
r̈1 + ω2r1 = 2ωC.

The general solution of this equation is

r1 = A sin(ωt) +B cos(ωt) + 2C/ω,

which remains bounded for all time.

Problem 7 We consider the (scaled) traffic model

∂

∂t
ρ+ ∂

∂x

(
ρ(1− ρ)

)
= 0

for modeling the traffic on a long single lane road. At position x = 1 there is a red
traffic light behind which a queue starts to form. At time t = 0, when the traffic
light turns green, the density of cars is given by

ρ0(x) =

x if 0 < x < 1,
0 else.

Sketch the characteristics of this equation, and show that a shock forms at (x, t) =
(1/2, 1/2). In addition, compute the solution of the equation for time t < 1/2 and
show that the position s(t) of the shock satisfies the differential equation

ṡ = s+ t− 1
2t , s(1/2) = 1/2.

Possible solution

• The characteristics satisfy the equation

ẋ = 1− 2z, x(0) = x0,

ż = 0, z(0) = ρ0(x0),
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implying that
x(t) = x0 + (1− 2ρ0(x0))t

whenever possible (that is, no characteristics have collided). Specifically, we
obtain for the characteristics that start at x0 ∈ [0, 1] the formula

x(t) = x0 + (1− 2x0)t.

Thus two such characteristics starting at points x0 and x1 collide when

x0 + (1− 2x0)t = x1 + (1− 2x1)t,

that is, for t = 1/2. Moreover, they all meet at the point x = 1/2. As a
consequence, we expect a shock to form at (x, t) = (1/2, 1/2). Immediately
to the left of the shock, the solution is equal to zero (because of the incoming
characteristics from starting points x0 < 0). Immediately to the right of the
shock, there is still some work to do. . .
At the discontinuity at x = 1, the characteristics have speed −1 immediately
to the left, and speed +1 immediately to the right. Thus, a rarefaction wave
is forming in the region |x − 1| > t (until we hit the shock). We model the
rarefaction wave by

ρ(x, t) = ϕ
(
x− 1
t

)
,

where we choose ϕ in such a way that the PDE is satisfied, that is,

−x− 1
t2

ϕ′
(
x− 1
t

)
+ 1
t

(
1− 2ϕ

(
x− 1
t

))
ϕ′
(
x− 1
t

)
= 0,

or (since φ′ 6= 0)
1− 2ϕ(s) = s,

that is, ϕ(s) = (1− s)/2, and

ρ(x, t) = t+ 1− x
2t .

This gives the solution immediately right to the shock.
We now consider the shock itself: The shock (s(t), t) satisfies the Rankine–
Hugoniot condition

ṡ = [j]
[ρ] ,

where [j] = j+ − j− denotes the jump in the flux at the shock, and [ρ] =
ρ+ − ρ− denotes the jump in density along the shock. We have ρ− = 0 and
j− = 0, and

ρ+ = t+ 1− s(t)
2t , j+ = ρ+(1− ρ+).
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Thus
[j]
[ρ] = j+ − j−

ρ+ − ρ−
= ρ+(1− ρ+)

ρ+ = 1− ρ+ = t− 1 + s

2t .

Thus the shock satisfies the equation

ṡ = t− 1 + s

2t

with initial condition s(1/2) = 1/2.
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