

TMA4195 Mathematical Modelling Autumn 2020

Exercise set 1

1 Let m, m_1 , and m_2 denote masses, E energy, f frequency, F force, and r distance. Consider the three physical laws: Einstein's $E = mc^2$, the Planck-Einstein relation E = hf, and Newton's law of gravity $F = G\frac{m_1m_2}{r^2}$.

Express the dimensions of c, h, and G in terms of SI-units.

The numerical value of these three constants depends on the choice of units for length, time, and mass. If L, T, and M and $\tilde{L}, \tilde{T}, \tilde{M}$ are two systems of units for length, time, and mass, then

$$a = val(a)L^{\alpha}T^{\beta}M^{\gamma} = \widetilde{val}(a)\tilde{L}^{\alpha}\tilde{T}^{\beta}\tilde{M}^{\gamma}$$

for a physical constant a, where val(a) and $\widetilde{val}(a)$ are the numerical values for a for the two systems of units.

Express in terms of c, h, and G, the units for length, time, and mass which makes the numerical values for c, h, and G all equal to 1. (These are the so-called Planck units for length, time, and mass.)

2 (Problem 4.1.3 p. 51 in Krogstad) What are the possible choices of core variables (dimensional independent variables) from the set $\{R_1, \ldots, R_6\}$ if the dimension matrix looks like:

	R_1	R_2	R_3	R_4	R_5	R_6
F_1	1	1	-1	0	2	2
F_2	-2	-1	1	0	-3	-2
F_3	0	1	0	1	0	2

3 (Problem 4.1.11 p. 53 in Krogstad)

The necessary force (F) to keep a ship at a constant speed (U) depends on its shape, primarily the length (L), width (W), and its depth into the water (D). In addition, the water density, ρ , the water viscosity, ν , and the acceleration of gravity, g, play a part. Use dimensional analysis to find an expression for the force which includes the two most famous dimensionless numbers in ship design:

> Froude number: $Fr = U/\sqrt{Lg}$, Reynolds number: $Re = LU/\nu$.

Ideally, a scale model¹ of the ship may be tested experimentally in water by keeping the dimensionless numbers for the model equal to those of the original ship. Is this really possible? Hints: $[F] = \text{kgm/s}^2$, $[\rho] = \text{kg/m}^3$, $[\nu] = \text{m}^2/\text{s}$, $[g] = \text{m/s}^2$.

4 We consider a rubber band which may be stretched to many times its original length l_0 . The rubber band has a "density" ρ which we measure in mass per unit length, that is, kg/m. How does the density ρ vary when we stretch the band to a length l from its original length l_0 and density ρ_0 ?

After stretching the band more that twice its original length, we pluck the band like a guitar string. This experiments shows, somewhat unexpected, that the pitch (=frequency ω) remains almost constant when we vary the length (try it!). However, when stretching the band up towards its breaking limit, the frequency increases somewhat. The force F required for stretching the band to length l is proportional to $l - l_0$ over most of the range, that is, $F = F_0 \frac{l - l_0}{l_0}$, where F_0 is a constant.

Use dimensional analysis to explain the behaviour of the frequency.

Hint: Assume first that $\omega = f(l, \rho, F)$, apply dimensional analysis, and then introduce the expression of the density as a function of l, l_0 and ρ_0 .

¹A scale model is a model of the ship with the same geometric shape, but with a smaller size (say, L = 1m for the model, compared to 100m for the original ship).