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Solutions to exercise set 1

1 We have [E] = kg m2 s−2, [m] = kg, thus [c] = [
√

E
m ] = m s−1.

Since [f ] = s−1, we have [~] = [Ef ] = kg m2 s−2 s = kg m2 s−1.

And finally, since [F ] = kg m s−2, we have [G] = [ Fr2

m1m2
] = kg m s−2 m2 kg−2 =

kg−1 m3 s−2.

Since the numerical value of all three constants are unity, the Planck units L, T , and
M must satisfy

c = LT−1, ~ = L2T−1M, G = L3T−2M−1.

Multiplying the last two equations eliminates M :

c = LT−1, G~ = L5T−3.

Eliminating L, we obtain T =
√

G~
c5

. From L = cT we get L =
√

G~
c3

, and also find

M =
√

~c
G .

Note: In terms of SI-units, these Planck scales are L = 1.616 × 10−35 m, T =
2.177× 10−44 s, and M = 2.176× 10−8 kg.

2 The rank of the dimension matrix is 3 and hence we can use as core variable any 3
Ri whose columns are independent.

Note that

2

R2︷ ︸︸ ︷ 1
−1

1

 =

R6︷ ︸︸ ︷ 2
−2

2


so we remove R6 for the time being. Then we note that only R2 and R4 contains
dimension F3 and hence one of these must be present in any choice of core variables.
Let us then try

R2 : R2R1R3 R2R3R4 R2R4R5

R2R1R4 R2R3R5

R2R1R5

R4 but not R2 : R3R1R4 R3R4R5

R4R1R5
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It is easy to see that all these combinations have independent columns in the dimen-
sion matrix, except R2R3R4.

Taking into account R6, we find the same combinations as for R2, but with R6

replacing R2. All in all, there are 13 possible choices of core variables.

3 Using the information provided in the problem, we assume

F = f (U,L,W,D, ρ, ν, g) .

The dimension matrix follows immediately and is shown in Table 1.

F U L W D ρ ν g

m 1 1 1 1 1 −3 2 1

s −2 −1 0 0 0 0 −1 −2

kg 1 0 0 0 0 1 0 0

Table 1: Dimension matrix

The rank is 3, and there are several possibilities for core variables (avoiding F ): (U,L, ρ),
(g,D, ρ), (ν, ρ,W ) , . . .. However, if one aims for the Froude and Reynolds numbers,
the choice (U,L, ρ) looks reasonable. With 8 variables, there are 8 − 3 = 5 dimen-
sionless combinations.

Since Re involves ν and Fr involves g, it is easy to arrive at the formula

F = ρU2L2 × Φ

(
Re,Fr,

W

L
,
D

L

)
.

If we want to use tests with a scale model in order to predict the behaviour of a real
sized ship, we have to measure the function Φ for those dimensionless parameters
that are typical for the original ship. Since the scale model keeps W/L and D/L
(and more general, the shape of the ship) unchanged, it is sufficient to measure the
function

Φ̃(Re,Fr)

for typical Froude and Reynolds numbers.

Now recall that the Froude number was Fr = U/
√
Lg, and the Reynolds number was

Re = LU/ν. If we thus scale the original ship down by a scaling factor of c, that
is, we replace L by L/c, we have to scale the speed of the ship down by a factor of√
c in order to obtain the same Froude number (realistically, we cannot change the

gravitational acceleration g). If we also want to keep the Reynolds number constant,
this means that we have to scale down the viscosity of the fluid by a factor of c3/2.
Up to a certain degree (a factor 4–5), changes in viscosity of water can be achieved
by heating, but this does not allow us to obtain reasonable scalings c. Alternatively,
we could try to replace water by a fluid with lower viscosity, but, again, the necessary
viscosities are not realistically achievable.

4 Let us begin setting up the dimension matrix for the physical quantities involved in
the problem.
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ω l ρ F

kg 0 0 1 1

m 0 1 −1 1

s −1 0 0 −2

This matrix has rank 3. We easily find three linearly independent columns, for
example 1, 2 and 3 and so we choose ω, l and ρ as core variables. The first
dimensionless combination we find is π1 = F/(ρxlyωz). The unknowns can be found
easily and are x = 1, y = 2 and z = 2, that is π1 = F/(ρl2ω2). If there is relationship
between these quantities, it has to be of the form f(π1) = 0. Since the frequency ω
is uniquely determined, it follows that π1 is a constant.1 This implies that

ω = C

√
F

ρl2
.

We now consider the situation where we are stretching a given rubber band and
observe how the frequency changes. Since the mass of the rubber band does not
change, if we stretch it, it follows that ρl is constant. Thus, for this particular
situation we obtain that

ω = Ĉ

√
F

l
.

Next, we assume (as discussed in the problem description) that the force F required
for stretching the rubber band is proportional to the length change l − l0, that is,

F ≈ F0(l − l0),

at least as long as the force is well below the rupture point of the band. As a
consequence, we obtain that

ω = Ĉ

√
F

l
≈ Ĉ

√
F0

l0

√
1− l0

l
=: ω∞

√
1− l0

l

for some frequency ω∞ only depending on the original rubber band. Therefore, if we
start with a rubber that is stretched to double its length, its frequency will rise from
approximately ω∞/

√
2 to ω∞ as we stretch the band further and further. In total,

the frequency will not change by more than a factor of
√

2, that is, its (musical)
pitch by only half an octave (in equally tempered tuning, a frequency difference by
a factor of

√
2 corresponds precisely to a diminished fifth or augmented fourth). Or,

if we stretch a rubber band from twice its original length to four times its original
length, its frequency will increase by a factor of

√
3/2 (which corresponds to a tonal

interval somewhere between a minor and major third).

Finally, we note that this analysis breaks down near the rupture point of the rubber
band: If we are close to the rupture point, the force required for stretching the band
further is no longer proportional to the length change, but increases faster than the
length. Thus we expect the frequency to rise again for a short time.

1Actually, this is only true up to a certain degree: If one solves the wave equation that describes the
oscillations of this rubber band (by separation of variables and then a Fourier series ansatz to fit the initial
conditions), it turns out that its oscillation can be decomposed as a (infinite) sum of oscillations of various
frequencies that are all multiples of some basic frequency. If we say that we are only interested in that
basic frequency, then the uniqueness argument is valid.
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