TMA4195 Mathematical Modelling Autumn 2020

Norwegian University of Science and Technology

Solutions to exercise set 2
Department of Mathematical
Sciences

1 In our notation we write

$$
u\left(x^{*}\right)=\mathrm{e}^{-10 x^{*}}+\mathrm{e}^{-100 x^{*}}, \quad x^{*} \in[0,1]
$$

for the unscaled relation.
We observe that the function u follows three different behaviours within the interval $[0,1]$: At first, both terms are relevant, although the second term decreases much faster than the first one (or: the derivative of the second term dominates); then, the second term is essentially negligible, while the first one is still much larger than zero; finally, both of the terms are essentially equal to zero.

Natural scalings:
1.) $x^{*}=\frac{1}{100} x, \quad$ then $\mathrm{e}^{-100 x^{*}} \sim 1$, when $x \sim 1$;
2.) $\quad x^{*}=\frac{1}{10} x, \quad\left(\right.$ then $\mathrm{e}^{-10 x^{*}} \sim 1$ and $\mathrm{e}^{-100 x^{*}} \ll 1$, when $x \sim 1$;
3.) $\quad x^{*}=1 \cdot x, \quad($ then $u \sim 0$, when $x \sim 1$.

Reasonable regions for these scalings are as follows:

1. For the first scaling $x^{*}=\frac{1}{100} x$, we can use values $x \in[0,2]$, corresponding to $x^{*} \in\left[0, \frac{2}{200}\right]$. Then

$$
u(x)=\mathrm{e}^{-\frac{1}{10} x_{1}}+\mathrm{e}^{-x_{1}} \approx 1+\mathrm{e}^{-x_{1}}
$$

or

$$
u\left(x^{*}\right) \approx 1+\mathrm{e}^{-100 x^{*}}
$$

2. Here we might choose values $x \in\left[\frac{2}{10}, 2\right]$, corresponding to $x^{*} \in\left[\frac{2}{100}, \frac{2}{10}\right]$. Then

$$
u(x)=\mathrm{e}^{-x}+\mathrm{e}^{-10 x} \approx \mathrm{e}^{-x}
$$

or

$$
u\left(x^{*}\right) \approx \mathrm{e}^{-10 x^{*}}
$$

3. Here we can choose $x=x^{*} \in\left[\frac{2}{10}, 1\right]$, which yields

$$
u(x)=\mathrm{e}^{-10 x}+\mathrm{e}^{-100 x} \approx 0
$$

In all cases, the boundaries between the regions should be understood to be fuzzy, and a small shift of them is perfectly fine.

2 We use the standard notation

$$
\begin{array}{rlrl}
m^{* \prime}\left(t^{*}\right) & =-\alpha, & m^{*}(0) & =M \tag{1}\\
x^{* \prime \prime}\left(t^{*}\right) & =\frac{\alpha \beta}{m^{*}\left(t^{*}\right)}-\frac{g}{\left(1+\frac{x^{*}\left(t^{*}\right)}{R}\right)^{2}}, & x^{*}(0)=x^{* \prime}(0)=0
\end{array}
$$

Let $x^{*}=R x, m^{*}=M m$ and $t^{*}=T t$ (where T is some timescale to be determined).
With these scales we consequently get the relations

$$
\frac{d m^{*}}{d t^{*}}=\frac{M}{T} \frac{d m}{d t}, \quad \frac{d x^{*}}{d t^{*}}=\frac{R}{T} \frac{d x}{d t}, \quad \frac{d^{2} x^{*}}{\left(d t^{*}\right)^{2}}=\frac{R}{T^{2}} \frac{d^{2} x}{(d t)^{2}}
$$

Inserting this in (1) and (2), and cleaning up a bit, we obtain the scaled system of equations
(3) $\quad m^{\prime}(t)=-\frac{\alpha T}{M}$,

$$
m(0)=1
$$

$$
\begin{equation*}
x^{\prime \prime}(t)=\underbrace{\left(\frac{T^{2} \alpha \beta}{R M}\right) \frac{1}{m(t)}}_{\text {Thrust }}-\underbrace{\left(\frac{g T^{2}}{R}\right) \frac{1}{(1+x(t))^{2}}}_{\text {Gravity }}, \quad x(0)=x^{\prime}(0)=0 \tag{4}
\end{equation*}
$$

We balance equation (4) according to when the thrust dominates over gravity (thrust $>$ gravity); this means we set

$$
\frac{T^{2} \alpha \beta}{R M}=1, \Longrightarrow T=\sqrt{\frac{R M}{\alpha \beta}}
$$

Thus the dimensionless problem is

$$
\begin{array}{rlrl}
m^{\prime} & =-\mu \\
x^{\prime \prime} & =\frac{1}{m}-\varepsilon \frac{1}{(1+x(t))^{2}}, & m(0) & =1 \\
& x(0) & =x^{\prime}(0)=0
\end{array}
$$

where $\mu=\sqrt{\frac{\alpha R}{\beta M}}$ and $\varepsilon=\frac{M g}{\alpha \beta}$. Note that ε is essentially the ration of gravitational force to rocket force meaning $\varepsilon \ll 1$ (assuming thrust dominates gravity).

3 The exact solution of the initial value problem is $y_{\text {exact }}(t)=\frac{1}{\epsilon^{2}}\left(1-e^{-\epsilon t}\right)-\frac{t}{\epsilon}$. Let $y_{\text {approx }}(t)=y_{0}(t)+\epsilon y_{1}(t)+\epsilon^{2} y_{2}(t)$. We want $y_{\text {approx }}$ to satisfy the initial data for every value of $0<\epsilon \leq 1$. This implies that $y_{0}(0)=y_{1}(0)=y_{2}(0)=0$ and $y_{0}^{\prime}(0)=y_{1}^{\prime}(0)=y_{2}^{\prime}(0)=0$. Inserting $y_{\text {approx }}$ in the equation, we get

$$
y_{0}^{\prime \prime}+1+\epsilon\left(y_{1}^{\prime \prime}+y_{0}^{\prime}\right)+\epsilon^{2}\left(y_{2}^{\prime \prime}+y_{1}^{\prime}\right)=0
$$

As this should hold for all $0<\epsilon \leq 1$, we have

$$
\begin{array}{r}
y_{0}^{\prime \prime}+1=0 \\
y_{1}^{\prime \prime}+y_{0}^{\prime}=0 \\
y_{2}^{\prime \prime}+y_{1}^{\prime}=0
\end{array}
$$

The initial values and integration of the equations gives

$$
y_{\text {approx }}(t)=-\frac{1}{2} t^{2}+\epsilon \frac{1}{6} t^{3}-\epsilon^{2} \frac{1}{24} t^{4}
$$

The Taylor expansion of $y_{\text {exact }}$ is given by

$$
y_{\text {exact }}(t)=\frac{1}{\epsilon^{2}}\left(1-\sum_{n=0}^{\infty} \frac{(-\epsilon t)^{n}}{n!}\right)-\frac{t}{\epsilon}=\sum_{n=2}^{\infty} \frac{\epsilon^{n-2}(-1)^{n+1} t^{n}}{n!}
$$

The difference between the exact and approximate solution is then

$$
y_{\text {exact }}-y_{\text {approx }}=\sum_{n=5}^{\infty} \frac{\epsilon^{n-2}(-1)^{n+1} t^{n}}{n!}=t^{2} O\left(\epsilon^{3} t^{3}\right)
$$

Thus, as long as t and ϵt are not too big, the approximation is very good. However, for large values of ϵt, the exact solution behaves like

$$
y_{e x a c t}(t) \sim-\frac{t}{\epsilon}=-\frac{1}{\epsilon^{2}} \epsilon t
$$

whereas the approximate solution behaves like

$$
y_{\text {approx }}(t) \sim-\epsilon^{2} \frac{1}{24} t^{4}=-\frac{1}{\epsilon^{2}} \frac{1}{24} \epsilon^{4} t^{4}
$$

Thus, for large values of t, we only have a good approximation, if ϵ decreases at the same time.

4 (a) From the problem's nature we have $0 \leq v^{*}(t) \leq V_{0}$. Then, V_{0} will be a scale for v^{*}, and moreover

$$
\frac{\left|b\left(v^{*}\right)^{2}\right|}{\left|a v^{*}\right|} \leq \frac{b V_{0}}{a} \ll 1
$$

We find a time scale from the simplified equation $m \frac{d v^{*}}{d t^{*}}+a v^{*}=0$ with solution $v^{*}\left(t^{*}\right)=A \exp \left(-\frac{a}{m} t^{*}\right)$, that is $T=\frac{m}{a}$. Alternatively, and this is easier, we find this scale by balancing the first and second term in equation (5) in the problem set (set $v^{*}=V v$ and $\left.t^{*}=T t\right):$

$$
m \frac{d v^{*}}{d t^{*}} \sim a v^{*} \quad \Rightarrow \quad m \frac{V}{T} \frac{d v}{d t} \sim a V v \underset{v, \underset{v}{v} \sim 1}{\rightsquigarrow} \quad m \frac{V}{T} \sim a V \quad \Rightarrow \quad T \sim \frac{m}{a}
$$

Using this scaling, we obtain the equation in the desired form and $\varepsilon=b V_{0} / a \ll 1$.
(b) Plugging in $v(t)=v_{0}(t)+\varepsilon v_{1}(t)+\cdots$ into the equation, we get that

$$
\begin{array}{cc}
O\left(\varepsilon^{0}\right): & \dot{v}_{0}=-v_{0} \\
O\left(\varepsilon^{1}\right): & \dot{v}_{1}=-v_{1}+v_{0}^{2}
\end{array}
$$

With the initial condition we obtain

$$
\begin{aligned}
& v_{0}(t)=\mathrm{e}^{-t} \\
& v_{1}(t)=\mathrm{e}^{-t}-\mathrm{e}^{-2 t}
\end{aligned}
$$

or

$$
v(t)=\mathrm{e}^{-t}+\varepsilon\left(\mathrm{e}^{-t}-\mathrm{e}^{-2 t}\right)+O\left(\varepsilon^{2}\right) .
$$

This is the so-called regular perturbation. We have seen previously that the approximative solution is not always reasonable when $t \rightarrow \infty$, and we thus need to check its long term validity.

From the theory we know that the exact solution has the form

$$
v_{\mathrm{ex}}(t)=\frac{\mathrm{e}^{-t}}{1-\varepsilon\left(1-\mathrm{e}^{-t}\right)}
$$

and since $0 \leq 1-\mathrm{e}^{-t}<1$ for $t \geq 0$, we can write the solution as a convergent geometric series.

$$
v_{\mathrm{ex}}(t)=\mathrm{e}^{-t} \sum_{k=0}^{\infty}\left(\varepsilon\left(1-\mathrm{e}^{-t}\right)\right)^{k}
$$

The initial terms in the perturbation expansion coincide with the initial terms in the series above, and we have:

$$
v_{\mathrm{ex}}(t)-\left(v_{0}(t)+\varepsilon v_{1}(t)\right)=\mathrm{e}^{-t} \sum_{k=2}^{\infty}\left(\varepsilon\left(1-\mathrm{e}^{-t}\right)\right)^{k} \leq \mathrm{e}^{-t} \varepsilon^{2} \sum_{m=0}^{\infty} \varepsilon^{m}=\frac{\varepsilon^{2} \mathrm{e}^{-t}}{1-\varepsilon} \leq \frac{\varepsilon^{2}}{1-\varepsilon}
$$

Thus, we have

$$
\lim _{\epsilon \rightarrow 0}\left(\sup _{t>0}\left|v_{\mathrm{ex}}(t)-\left(v_{0}(t)+\varepsilon v_{1}(t)\right)\right|\right)=0
$$

and so $v_{a}(t)=v_{0}(t)+\varepsilon v_{1}(t)$ is a uniform approximation to the exact solution on the domain $t>0$.

