Norwegian University of Science and Technology
Department of Mathematical
Sciences

1 Consider the problem

$$
\ddot{x}+2 \varepsilon \dot{x}+\varepsilon x=0, \quad x(0)=0, \quad \dot{x}(0)=1-\varepsilon .
$$

Determine x_{0} and x_{1} in the regular perturbation expansion

$$
x(t)=x_{0}(t)+\varepsilon x_{1}(t)+\varepsilon^{2} x_{2}(t)+\cdots
$$

2 (Problem 2, p. 23 in A. W. Bush: Perturbation Methods for Engineers and Scientists)
Obtain a two-term perturbation expansion for the solution of

$$
\dot{y}-y-\varepsilon y^{2} \mathrm{e}^{-t}=0, \quad y(0)=1 .
$$

3 Small angle approximation of a physical pendulum

A pendulum of mass m and length L and point of fixation O is set in motion. The position \vec{x} of the pendulum is constrained to be on the circle

$$
S=\{\vec{x}:|\vec{x}|=L\} .
$$

As discussed in the lecture, its motion can be described, in the absence of friction,
by the equation

$$
\begin{aligned}
m L \frac{d^{2} \vartheta^{*}}{d\left(t^{*}\right)^{2}} & =-g \sin \left(\vartheta^{*}\right) \\
\vartheta^{*}(0) & =\Theta_{0} \\
\frac{d \vartheta^{*}}{d t^{*}}(0) & =0
\end{aligned}
$$

After rescaling, we can rewrite this as

$$
\begin{aligned}
\ddot{\vartheta} & =-\frac{1}{\varepsilon} \sin (\varepsilon \vartheta) \\
\vartheta(0) & =1 \\
\dot{\vartheta}(0) & =0
\end{aligned}
$$

with small parameter $0<\varepsilon \ll 1$. Now it is possible to apply the idea of asymptotic expansions and write the solution of this equation as

$$
\vartheta=\vartheta_{0}+\varepsilon \vartheta_{1}+\varepsilon^{2} \vartheta_{2}+\ldots
$$

As we have seen in the lecture, the first terms in this expansion are

$$
\begin{aligned}
& \vartheta_{0}(t)=\cos t \\
& \vartheta_{1}(t)=0 \\
& \vartheta_{2}(t)=\frac{1}{192}(\cos t-\cos 3 t)+\frac{1}{16} t \sin t
\end{aligned}
$$

That is, we have

$$
\vartheta(t) \approx \cos t+\frac{\varepsilon^{2}}{192}(\cos t-\cos 3 t)+\frac{\varepsilon^{2}}{16} t \sin t
$$

for $\operatorname{small} \varepsilon$ and t. The approximation, however, is not periodic, whereas the exact solution ϑ of the ODE is. The problem here is the term

$$
\frac{\varepsilon^{2}}{16} t \sin t
$$

the amplitude of which grows with t. Such terms are called secular (in the sense of non-periodic, slowly changing with time).
In order to avoid secular terms in an asymptotic expansion, one can use the PoincaréLindstedt method. The idea here is to write

$$
\vartheta(t)=\vartheta_{0}(\omega t)+\varepsilon \vartheta_{1}(\omega t)+\varepsilon^{2} \vartheta_{2}(\omega t)+\ldots
$$

with

$$
\omega=1+\varepsilon \omega_{1}+\varepsilon^{2} \omega_{2}+\ldots
$$

Then one tries to find functions $\vartheta_{0}, \vartheta_{1}, \vartheta_{2}, \ldots$, and values $\omega_{1}, \omega_{2}, \ldots$, in such a way that the secular terms are cancelled out in the approximations.
a) Find equations for $\vartheta_{0}, \vartheta_{1}, \ldots$, and show that

$$
\vartheta_{0}(t)=\cos t
$$

b) Determine ϑ_{1} and ϑ_{2} by choosing $\omega_{1}, \omega_{2}, \ldots$ avoiding secular terms.

