TMA4195 Mathematical Modelling Autumn 2020
Norwegian University of Science and Technology

Solutions to exercise set 5
Department of Mathematical
Sciences

1 We consider the differential equation

$$
\frac{d u}{d t}=u^{2}\left(u^{2}-1\right) .
$$

whose equilibrium solutions are

$$
f(u)=u^{2}\left(u^{2}-1\right)=0 \quad \Rightarrow \quad u_{0}=-1, u_{1}=0, u_{2}=1
$$

Let us study u_{0}. To show it is stable, we introduce a small perturbation $y(t)$. That is:

$$
u(t)=u_{0}+y(t) .
$$

After having plugged it in the original equation, we get

$$
\frac{d y}{d t}=\underbrace{f\left(u_{0}\right)}_{=0}+f^{\prime}\left(u_{0}\right) y+\frac{1}{2} f^{\prime \prime}\left(u_{0}\right) y^{2}+\cdots .
$$

Let us focus on the terms of order smaller than 1

$$
\frac{d y}{d t}=f^{\prime}\left(u_{0}\right) y
$$

whose solution is

$$
y(t)=C e^{\alpha t} \quad \text { with } \quad \alpha=f^{\prime}\left(u_{0}\right)
$$

Thus, if $\alpha<0$, the perturbation y disappears with time and the equilibrium solution u_{0} is asymptotic stable. If $\alpha>0$, the perturbation increases with time and the equilibrium solution is unstable. In our case

$$
f^{\prime}\left(u_{0}\right)=4 u_{0}^{3}-2 u_{0}=-2,
$$

Therefore u_{0} is a stable equilibrium solution. In the same way we can study the equilibrium solution u_{2}. We find that

$$
f^{\prime}\left(u_{2}\right)=2
$$

and u_{2} is unstable. For u_{1} we get $f^{\prime}\left(u_{1}\right)=0$, so we need to consider further terms in the Taylor expansion. Let us add the second one. The equation

$$
\frac{d y}{d t}=\frac{1}{2} f^{\prime \prime}\left(u_{1}\right) y^{2}=-y^{2}
$$

has general solution

$$
y(t)=\frac{1}{C+t} .
$$

If we start for $t=0$ with a small negative value for y, the constant C becomes negative and the solution blows up whenever $t \rightarrow-C$. Therefore u_{1} is unstable.

2 (a) The equilibrium points are given by

$$
\frac{d u}{d t}=0 \Rightarrow\left\{\begin{array}{l}
u_{0}=\mu \\
u_{1}=\sqrt{\mu}, \quad \mu \geq 0 \\
u_{2}=-\sqrt{\mu}, \quad \mu \geq 0
\end{array}\right.
$$

We have two bifurcation points, i.e. points where the solution curves intersect. These points are given by $\mu= \pm \sqrt{\mu}$, that is the two bifurcation points are $(0,0),(1,1)$. To say something about stability, we first calculate

$$
f^{\prime}(u)=3 u^{2}-2 \mu u-\mu
$$

By plugging in the expression for the equilibrium solutions we get

$$
\begin{aligned}
f^{\prime}\left(u_{0}\right) & =\mu(\mu-1) \\
f^{\prime}\left(u_{1}\right) & =2 \mu(1-\sqrt{\mu}) \\
f^{\prime}\left(u_{2}\right) & =2 \mu(1+\sqrt{\mu})
\end{aligned}
$$

We see that u_{3} is always unstable, u_{2} is stable for $\mu>1$ and u_{1} is stable when $0<\mu<1$. We see that the stability changes at the bifurcation points. See Figure 1 for the sketch of the bifurcation diagram.
(b) The equilibrium points are given by

$$
\frac{d u}{d t}=0 \Rightarrow\left\{\begin{array}{l}
u_{0}=0 \\
u_{1}=9 / \mu, \quad \mu \neq 0 \\
u_{2,3}=1 \pm \sqrt{\mu+1}, \quad \mu \geq-1
\end{array}\right.
$$

The branching diagram is showed in figure 2 .
From the diagram we see that we have two bifurcation points, i.e. points where the solution curves intersect. These points are given by

$$
\begin{aligned}
& 1-\sqrt{\mu+1}=0 \\
& 1+\sqrt{\mu+1}=9 / \mu
\end{aligned}
$$

Hence the bifurcation points are $(\mu, u)=\{(0,0),(3,3)\}$.
To say something about stability, we first calculate

$$
f^{\prime}(u)=(9-\mu u)\left(\mu+2 u-u^{2}\right)-\mu u\left(\mu+2 u-u^{2}\right)+2 u(9-\mu u)(1-u)
$$

By plugging in the expression for the equilibrium solutions we get

$$
\begin{aligned}
f^{\prime}\left(u_{0}\right) & =9 \mu \\
f^{\prime}\left(u_{1}\right) & =-9\left(\mu+\frac{18}{\mu}-\frac{81}{\mu^{2}}\right) \\
& =-\frac{9}{\mu^{2}}\left(\mu^{3}+18 \mu-81\right) \\
& =-\frac{9}{\mu^{2}}(\mu-3)\left(\mu^{2}+3 \mu+27\right) \\
f^{\prime}\left(u_{2}\right) & =2(1-\sqrt{\mu+1})[9-\mu(1-\sqrt{\mu+1})] \sqrt{\mu+1} \\
f^{\prime}\left(u_{3}\right) & =-2(1+\sqrt{\mu+1})[9-\mu(1+\sqrt{\mu+1})] \sqrt{\mu+1} .
\end{aligned}
$$

Figure 1: Bifurcation diagram 2.2 (a).

By sketching a sign line for the expression on the right hand side we find that
u_{0} is $\left\{\begin{array}{l}\text { stable for } \mu<0 \\ \text { unstable for } \mu>0,\end{array}\right.$
u_{1} is $\left\{\begin{array}{l}\text { stable for } \mu>3 \\ \text { unstable for } \mu \in\langle-\infty, 0\rangle \cup\langle 0,3\rangle,\end{array}\right.$
u_{2} is $\left\{\begin{array}{l}\text { stable for } \mu>0 \\ \text { unstable for } \mu \in\langle-1,0\rangle,\end{array}\right.$
u_{3} is $\left\{\begin{array}{l}\text { stable for } \mu \in\langle-1,3\rangle \\ \text { unstable for } \mu>3 .\end{array}\right.$
We see from this that the stability changes in the bifurcation points.

Figure 2: Branching diagram 2.2 (b).

3 We are given the equation

$$
\begin{equation*}
\frac{\partial c}{\partial t}=\frac{\partial^{2} c}{\partial x^{2}}+c(1-c), \quad t>0, x \in \mathbb{R} \tag{1}
\end{equation*}
$$

a) We linearize the equation around $c=0$. It is more transparent to write the equation as

$$
c_{t}=c_{x x}+q(c) .
$$

The only term we need to linearize is q, since the other terms are already linear:

$$
q(c) \approx q(0)+q^{\prime}(0) c=0+1 \cdot c=c,
$$

and hence the linearized equation is

$$
\begin{equation*}
c_{t}=c_{x x}+c, \tag{2}
\end{equation*}
$$

where we have set $c:=c_{L}(x, t)$. We thus have $k=1$.
b) We can solve the linearized equation in many ways, but following the hint, we want to transform it to the heat equation. We do this using an integrating factor. Let $\bar{c}=e^{-k t} c$ and note that

$$
\frac{\partial}{\partial t} \bar{c}=e^{-k t}\left(c_{t}-k c\right)=e^{-k t} c_{x x}=\bar{c}_{x x}
$$

This can be solved by convolution with the fundamental solution c_{F} :

$$
\bar{c}=\bar{c}_{0} * c_{F}=\int_{-\infty}^{\infty} \bar{c}(y, 0) c_{F}(x-y, t) \mathrm{d} y .
$$

We then get

$$
c_{L}(x, t)=\mathrm{e}^{k t} \bar{c}(x, t)=\mathrm{e}^{k t} \int_{-\infty}^{\infty} c_{0}(y) c_{F}(x-y, t) \mathrm{d} y,
$$

where we note that $\bar{c}(y, 0)=e^{-0} c(y, 0)=c_{0}(y)$.
Inserting the given solution of the fundamental solution c_{F}, we get

$$
c_{L}(x, t)=e^{k t} \int_{-\infty}^{\infty} c_{0}(y) \frac{1}{\sqrt{4 \pi t}} e^{-\frac{(x-y)^{2}}{4 t}} d y .
$$

c) Using the hint, we calculate
$\left|c_{L}-0\right| \leq \mathrm{e}^{k t} \int_{-\infty}^{\infty}\left|c_{0}(y)\right| c_{F}(x-y, t) \mathrm{d} y \leq \mathrm{e}^{k t} \max _{x \in \mathrm{R}}\left|c_{0}(x)\right| \cdot 1=\mathrm{e}^{k t} \max _{x \in \mathrm{R}}\left|c_{0}(x)-0\right|$.
d) The equilibrium points of (1) are its constant solutions, and if $c=c_{E}$ is a constant solution of (1), then $\left(c_{E}\right)_{t}=\left(c_{E}\right)_{x x}=0$ and $q\left(c_{E}\right)=c_{E}\left(c_{E}-1\right)=0$. The solutions/equilibrium points are therefore $c_{E}=0$ and $c_{E}=1$.
To study the stability of the equilibrium points c_{E}, we check whether solutions of the equation linearized arond c_{E} that start near c_{E} remain near for all times. To do that, let

$$
c(x, t)=c_{E}+\tilde{c}(x, t)
$$

and note that if \tilde{c} is not so big, then

$$
\tilde{c}_{t}=\tilde{c}_{x x}+q\left(c_{E}+\tilde{c}\right) \approx \tilde{c}_{x x}+q\left(c_{E}\right)+q^{\prime}\left(c_{E}\right) \tilde{c}
$$

Note that $q\left(c_{E}\right)=0$ and let \hat{c} be the solution of the linearized equation

$$
\begin{equation*}
c_{t}=c_{x x}+q^{\prime}\left(c_{E}\right) c \tag{3}
\end{equation*}
$$

This linearized equation only has the equilibrium point $\hat{c}=0$ (since $q^{\prime} \neq 0$). By definition we say that c_{E} is a stable(/unstable) equilibrium point of the original non-linear equation according to linear stability analysis if $\hat{c}=0$ is a stable(/unstable) equilibrium point of the linearized equation 3.
We solve equation (3) and $c(x, 0)=c_{0}(x)$ as in part b), this time with using the integrating factor $e^{-q^{\prime}\left(c_{e}\right) t}$:

$$
\hat{c}(x, t)=e^{q^{\prime}\left(c_{e}\right) t} \int_{\mathbb{R}} c_{0}(y) c_{F}(x-y, t) d y .
$$

Note that if $\left|c_{0}(x)-0\right|=\left|c_{0}\right|<\delta$, then

$$
|\hat{c}(x, t)-0| \leq \max _{x \in \mathrm{R}}\left|c_{0}(x)-0\right|<\delta e^{q^{\prime}\left(c_{e}\right) t} .
$$

Hence it follows that $\hat{c}=0$ is a stable equilibrium point if $q^{\prime}\left(c_{e}\right) \leq 0$ since then small perturbations remain small for all times. On the other hand, if $q^{\prime}\left(c_{e}\right)>0$, then $\hat{c}=0$ is not stable any more since we can find small perturbations that blows up in time. Take e.g. $c_{0}=\delta$ and check that

$$
\hat{c}(x, t)=\delta e^{q^{\prime}\left(c_{e}\right) t} \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty .
$$

We compute q^{\prime} and find that $q^{\prime}(0)=1>0$ and $q^{\prime}(1)=-1<0$. From the discussion above we can then conclude according to linear stability analysis that $c_{E}=0$ is unstable while $c_{E}=1$ is stable.

