TMA4195 Mathematical Modelling Autumn 2020
Norwegian University of Science and Technology

Solutions to exercise set 7
Department of Mathematical
Sciences

1 (a) The characteristic equations for Burgers' equation read

$$
\begin{array}{ll}
\dot{x}=z, & x(0)=x_{0} \\
\dot{z}=0 & z(0)=u_{0}\left(x_{0}\right) .
\end{array}
$$

Solving these equations gives

$$
z(t)=z(0)=u_{0}\left(x_{0}\right)
$$

and

$$
x(t)=x_{0}+t u_{0}\left(x_{0}\right)
$$

Let us now first consider the case

$$
u_{0}(x)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x>0\end{cases}
$$

In this case, the characteristics are

$$
x(t)=x_{0}+ \begin{cases}0 & \text { if } x<0 \\ t & \text { if } x>t>0\end{cases}
$$

The characteristics do not collide, and we have a well defined solution at all points covered by the characteristics. More precisely, the characteristics $x(t)$ starting at $x_{0}<0$ imply that

$$
u(x(t), t)=u\left(x_{0}+0, t\right)=u_{0}\left(x_{0}\right)=0
$$

while those starting at $x_{0}>0$ imply that

$$
u(x(t), t)=u\left(x_{0}+t, t\right)=u_{0}\left(x_{0}\right)=1
$$

Or,

$$
u(x, t)= \begin{cases}0 & \text { if } x<0 \\ 1 & \text { if } x-t>0\end{cases}
$$

However, there is a "dead zone" in the cone $0<x<t$ that is not covered by characteristics Thus we model the solution in that region as a rarefaction wave

$$
u(x, t)=\varphi\left(\frac{x}{t}\right) \quad \text { if } 0<x<t
$$

The function φ has to satisfy Burgers' equation, that is, we need that

$$
0=u_{t}+u u_{x}=-\frac{x}{t^{2}} \varphi^{\prime}\left(\frac{x}{t}\right)+\frac{1}{t} \varphi\left(\frac{x}{t}\right) \varphi^{\prime}\left(\frac{x}{t}\right)
$$

or

$$
0=\frac{1}{t} \varphi^{\prime}\left(\frac{x}{t}\right)\left(-\frac{x}{t}+\varphi\left(\frac{x}{t}\right)\right)
$$

Thus

$$
\varphi\left(\frac{x}{t}\right)=\frac{x}{t}
$$

and we obtain the solution

$$
u(x, t)= \begin{cases}0 & \text { if } x<0 \\ \frac{x}{t} & \text { if } 0<x<t \\ 1 & \text { if } x>t>0\end{cases}
$$

Now we consider the case

$$
u_{0}(x)= \begin{cases}1 & \text { if } x<0 \\ 0 & \text { if } x>0\end{cases}
$$

Here the characteristics are

$$
x(t)=x_{0}+ \begin{cases}t & \text { if } x<0 \\ 0 & \text { if } x>0\end{cases}
$$

If either $x<0$ or $x>t>0$, there is a unique characteristic passing through the point (x, t). Thus we obtain that

$$
u(x, t)= \begin{cases}1 & \text { if } x<0 \\ 0 & \text { if } x>t>0\end{cases}
$$

However, in all points (x, t) with $t>x>0$, two characteristics collide. Thus we model the solution as a shock solution with

$$
u(x, t)= \begin{cases}1 & \text { if } x<s(t) \\ 0 & \text { if } x>s(t)\end{cases}
$$

where the shock s satisfies the Rankine-Hugoniot condition

$$
\dot{s}(t)=\frac{[j]}{[u]}=\frac{j\left(u\left(s(t)^{+}, t\right)\right)-j\left(u\left(s(t)^{-}, t\right)\right)}{u\left(s(t)^{+}\right)-u\left(s(t)^{-}\right)}=\frac{\frac{1}{2} 1^{2}-\frac{1}{2} 0^{2}}{1-0}=\frac{1}{2}
$$

with $s(0)=0$. Thus

$$
s(t)=\frac{1}{2} t
$$

and we obtain the shock solution

$$
u(x, t)= \begin{cases}1 & \text { if } x<\frac{1}{2} t \\ 0 & \text { if } x>\frac{1}{2} t\end{cases}
$$

(b) The characteristic equations for this non-homogeneous equation are

$$
\begin{array}{ll}
\dot{x}=z, & x(0)=x_{0}, \\
\dot{z}=-z, & z(0)= \begin{cases}0 & \text { if } x_{0}<0 \\
x_{0} & \text { if } x_{0}>0\end{cases}
\end{array}
$$

For $x_{0}<0$, we immediately obtain the solutions $z(t)=0$ and $x(t)=x_{0}$. For $x_{0}>0$, the equation for z has the solution

$$
z(t)=u_{0}\left(x_{0}\right) e^{-t}=x_{0} e^{-t}
$$

Inserted in the equation for x, this yields

$$
\dot{x}=x_{0} e^{-t}
$$

and therefore, using the initial condition $x(0)=x_{0}$,

$$
x(t)=x_{0}\left(2-e^{-t}\right)
$$

Since $1<\left(2-e^{-t}\right) \leq 2$ for all $t \geq 0$, it follows that the characteristics do not collide and cover the whole region $x>0, t>0$. Thus we obtain the solution

$$
u\left(x\left(2-e^{-t}\right), t\right)=x e^{-t}
$$

for $x>0, t>0$. Or, setting $y=x\left(2-e^{-t}\right)$, we obtain

$$
u(y, t)=\frac{y e^{-t}}{2-e^{-t}}=\frac{y}{2 e^{t}-1}
$$

To summarise, we obtain

$$
u(x, t)= \begin{cases}0 & \text { if } x<0 \\ \frac{x}{2 e^{t}-1} & \text { if } x>0\end{cases}
$$

2 (a) Let $x(t)$ be given by $\dot{x}(t)=1, x(0)=x_{0}$ and define $z(t)=u(x(t), t)$. Then $\dot{z}(t)=u_{t}+u_{x} \cdot 1=-u(x(t), t)=-z(t)$, and the characteristic equations are

$$
\begin{aligned}
& \dot{x}=1, \quad x(0)=x_{0} \\
& \dot{z}=-z, \quad z(0)=u_{0}\left(x_{0}\right)
\end{aligned}
$$

This gives $x=x_{0}+t$ and $z(t)=u_{0}\left(x_{0}\right) e^{-t}$. But x_{0} is not given, we want to compute $u(x, t)$. We calculate x_{0} from $x(t), x_{0}=x-t$ and thus the solution is $u(x, t)=u_{0}(x-t) e^{-t}$.
(b) Let $x(t)$ be given by $\dot{x}(t)=1, x(0)=x_{0}$ and define $z(t)=u(x(t), t)$. Then $\dot{z}(t)=u_{t}+u_{x} \cdot 1=x(t)$, and the characteristic equations are

$$
\begin{array}{ll}
\dot{x}=1, & x(0)=x_{0} \\
\dot{z}=x, & z(0)=u_{0}\left(x_{0}\right)
\end{array}
$$

The solutions are $x(t)=x_{0}+t, z(t)=z_{0}+x_{0} t+\frac{1}{2} t^{2}$. This gives $u(x, t)=$ $u_{0}(x-t)+x t-\frac{1}{2} t^{2}$.
Remark: For equations of the type $u_{t}+f(u, x) u_{x}=g(u, x)$ let $x(t)=f(z, x), z(t)=$ $u(x(t), t)$. Then

$$
\begin{aligned}
\dot{z} & =u_{t}(x(t), t)+u_{x}(x(t), t) \dot{x}(t) \\
& =u_{t}+f(u, x) u_{x}=g(u, x) \\
& =g(z, x)
\end{aligned}
$$

and the characteristic equations are $\dot{x}=f(z, x), \dot{z}=g(z, x)$. We need to be able to solve the equations and find x_{0}, z_{0} expressed with x, t, u_{0}.

3 (1.13 in Ockendon, Howison, Lacey, Movchan, Applied Partial Differential Equations)
a) Rankine-Hugoniot: for $u_{t}+\frac{\partial}{\partial x} f(u)=0$:

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}\left(u^{+}-u^{-}\right)=f\left(u^{+}\right)-f\left(u^{-}\right)
$$

Here $f(u)=\frac{1}{3} u^{3}$, so

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=\frac{1}{3} \frac{\left(u^{+}\right)^{3}-\left(u^{-}\right)^{3}}{u^{+}-u^{-}}
$$

Characteristic equations: $z(t)=u(x(t), t)$

$$
\begin{cases}\dot{x}=f^{\prime}(z)=z^{2}, & x(0)=x_{0} \\ \dot{z}=0, & z(0)=u(x(0), 0)=u_{0}\left(x_{0}\right)\end{cases}
$$

Solution:

$$
\left\{\begin{array}{l}
z=\text { const }=u_{0}\left(x_{0}\right) \\
x=x_{0}+t\left(u_{0}\left(x_{0}\right)\right)^{2}
\end{array}\right.
$$

Hence characteristics are straight lines.
b) The problem consists of 2 Riemann problems:

$$
\begin{align*}
& u_{t}+u^{2} u_{x}=0, \quad u(x, 0)=\left\{\begin{array}{lll}
0 & x<0 \\
1 & x>0 & (x<1)
\end{array}\right. \tag{1}\\
& u_{t}+u^{2} u_{x}=0, \quad u(x, 0)=\left\{\begin{array}{lll}
1 & x<1 & (x>0) \\
0 & x>1
\end{array}\right.
\end{align*}
$$

For (1):

$$
x=x_{0}+t \cdot\left\{\begin{array}{ll}
0 & x_{0}<0 \\
1 & x_{0}>0
\end{array} \quad\left(x_{0}<1\right)\right.
$$

There is a "dead sector" and we know we have to fill it with a rarefaction fan:

$$
\begin{equation*}
u(x, t)=\phi\left(\frac{x}{t}\right) \tag{3}
\end{equation*}
$$

i.e. a function constant at rays out of $(0,0)$. Insert (3) into (1) to find that

$$
\begin{aligned}
\phi^{\prime}\left(\frac{x}{t}\right) & \left(-\frac{x}{t^{2}}\right)+\phi^{2} \phi^{\prime}\left(\frac{x}{t}\right) \frac{1}{t}=0 \\
& \Rightarrow \phi^{2}=\frac{x}{t}, \quad \Rightarrow \phi=\sqrt{\frac{x}{t}}
\end{aligned}
$$

Solution:

$$
u(x, t)= \begin{cases}0, & x<0 \\ \sqrt{\frac{x}{t}}, & 0<x<t \\ 1, & x>t \quad \text { (but not too big) }\end{cases}
$$

For (2):

$$
x=x_{0}+t \cdot \begin{cases}1 & x_{0}<1 \quad\left(x_{0}>0\right) \\ 0 & x_{0}>1\end{cases}
$$

Characteristics collide at $x=1$, hence there is a shock starting at $(x, t)=(1,0)$ and moving with speed

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=\frac{1}{3} \frac{0^{3}-1^{3}}{0-1}=\frac{1}{3}
$$

Hence

$$
S(t)=1+\frac{1}{3} t
$$

The shock solution then becomes

$$
u(x, t)= \begin{cases}1 & x<S(t) \quad(x>t) \\ 0 & x>S(t)\end{cases}
$$

Total solution

$$
u(x, t)= \begin{cases}0 & x<0 \\ \sqrt{\frac{x}{t}} & 0<x<t \\ 1 & t<x<1+\frac{1}{3} t \\ 0 & x>1+\frac{1}{3} t\end{cases}
$$

Note: Solution only defined as long as $t \leq 1+\frac{1}{3} t$ or $t \leq \frac{3}{2}$.
c) For $t>\frac{3}{2}$, the left state of shock changes from (1) to $\sqrt{\frac{x}{t}}=\sqrt{\frac{S(t)}{t}}(<0)$ and hence the speed of the shock changes to

$$
\begin{aligned}
\frac{\mathrm{d} S}{\mathrm{~d} t} & =\frac{1}{3} \frac{\left(u^{+}\right)^{3}-\left(u^{-}\right)^{3}}{u^{+}-u^{-}} \\
& =\frac{1}{3} \frac{0^{3}-\left(\frac{S(t)}{t}\right)^{3 / 2}}{0-\sqrt{\frac{S(t)}{t}}} \\
& =\frac{1}{3} \frac{S(t)}{t}
\end{aligned}
$$

Since

$$
S\left(t=\frac{3}{2}\right)=\frac{3}{2}
$$

we solve (separable equations) and find that

$$
S(t)=\left(\frac{3}{2}\right)^{\frac{2}{3}} t^{1 / 3}
$$

The new solution is then

$$
u(x, t)= \begin{cases}0, & x<0 \\ \sqrt{\frac{x}{t}}, & 0<x<S(t) \\ 0, & S(t)<x\end{cases}
$$

and this solution persists until $t=+\infty$.

4 a) From the general conservation law it follows immediately that

$$
\frac{d}{d t} \int_{R}(\Phi \rho) d V+\int_{\partial R} \mathbf{j} \cdot \mathbf{n} d \sigma=\int_{R} q d V
$$

We assume that the wells are δ-functions (which is OK assuming the reservoir is large compared to the wells),

$$
q(\mathbf{x}, t)=\sum_{n=1}^{2} q_{n}(t) \delta\left(\mathbf{x}-\mathbf{x}_{n}\right)
$$

Thus

$$
\frac{d}{d t} \int_{R}(\Phi \rho) d V+\int_{\partial R} \mathbf{j} \cdot \mathbf{n} d \sigma=q_{1}+q_{2}
$$

If ρ is constant and the properties of R are unchanging in time, then

$$
\frac{d}{d t} \int_{R}(\Phi \rho) d V=0
$$

and the balance of the water is

$$
\int_{\partial R} \mathbf{j} \cdot \mathbf{n} d \sigma=q_{1}+q_{2} .
$$

b) When

$$
\begin{gathered}
{[p]=\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \frac{1}{\mathrm{~m}^{2}}=\frac{\mathrm{kg}}{\mathrm{~s}^{2} \cdot \mathrm{~m}} .} \\
{[\nabla p]=\frac{\mathrm{kg} \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \frac{1}{\mathrm{~m}^{3}}=\frac{\mathrm{kg}}{\mathrm{~s}^{2} \cdot \mathrm{~m}^{2}} .}
\end{gathered}
$$

the dimension matrix is

	\mathbf{j}	K	μ	∇p
kg	0	0	1	1
m	1	2	-1	-2
s	-1	0	-1	-2

We see that the rank is 3 , and we have a dimensionless combination, which we find easily. Strictly speaking, we derive the relation for scalar quantities, and use physical insight to find the given form. It may be noted that K in general will not be a scalar, but a 2nd order tensor (This happens typically in layered rocks where the pores are mostly in one direction).
c) We assume that the rod lies along the x-axis and has a constant cross section A. The conservation law for a section of the rod is then

$$
\frac{d}{d t} \int_{a}^{b}\left(S_{i} \Phi\right) A d x+j_{i}(b) A-j_{i}(a) A=0, i=o, v
$$

We get the differential formulation in the usual way,

$$
\Phi \frac{\partial S_{i}}{\partial t}+\frac{\partial j_{i}}{\partial x}=0, i=o, v
$$

We eliminate $\frac{\partial p}{\partial x}$ by adding the equations for the flux:

$$
-\left(k_{o}\left(S_{o}\right) \frac{K}{\mu_{o}}+k_{v}\left(S_{v}\right) \frac{K}{\mu_{v}}\right) \frac{\partial p}{\partial x}=q,
$$

i.e.

$$
\frac{\partial p}{\partial x}=-\frac{q}{\left(k_{o}\left(S_{o}\right) \frac{K}{\mu_{o}}+k_{v}\left(S_{v}\right) \frac{K}{\mu_{v}}\right)}
$$

By inserting this in the equation for $S \equiv S_{v}$, we get

$$
\begin{aligned}
\Phi \frac{\partial S}{\partial t}+\frac{\partial j_{v}}{\partial x} & = \\
& =\Phi \frac{\partial S}{\partial t}+\frac{\partial}{\partial x}\left(k_{v}(S) \frac{K}{\mu_{v}} \frac{q}{\left(k_{o}(1-S) \frac{K}{\mu_{o}}+k_{v}(S) \frac{K}{\mu_{v}}\right)}\right) \\
& =\Phi \frac{\partial S}{\partial t}+\frac{\partial}{\partial x} f(S)=0
\end{aligned}
$$

d) By inserting the given quantities, we see that $f(S)=q S^{2}$ and the equation reduces to

$$
\frac{\partial S}{\partial t}+\frac{q}{\Phi} \frac{\partial S^{2}}{\partial x}=0
$$

This is a regular first order hyperbolic equation with kinematic velocity

$$
c(S)=\frac{2 q}{\Phi} S
$$

To study this more carefully, we set up the equation for a characteristic starting point x_{0}, where $0<x_{0}<L$:

$$
x=x_{0}+\frac{2 q}{\Phi} S\left(x_{0}\right) t=x_{0}+\frac{2 q}{\Phi}\left(1-\frac{x_{0}}{L}\right) t
$$

We leave to the reader to plot the characteristics. If we do this correctly, we see that all the characteristics meet in the point $x_{s}=L, t_{s}=\frac{\Phi L}{2 q}$. Furthermore, the solution $S=1$ above the characteristic that starts in the origin, i.e. $x=\frac{2 q t}{\Phi}$. For a point (x, t) below this characteristic, we have

$$
x=x_{0}+\frac{2 q}{\Phi}\left(1-\frac{x_{0}}{L}\right) t
$$

i.e.

$$
x_{0}=L \frac{2 q t-x \Phi}{2 q t-\Phi L}
$$

and

$$
S(x, t)=1-\frac{2 q t-x \Phi}{2 q t-\Phi L}
$$

