0
Norwegian University of Science and Technology
Department of Mathematical
Sciences

TMA4195
 Mathematical Modelling
 Autumn 2020

Solutions to exercise set 9

1 (a) We look at an interval $[x, x+\Delta x]$ on \mathbb{R}, and get that the conservation of mass in the interval is

$$
\begin{aligned}
\frac{\text { change of mass in the interval }}{\text { time }} & =\text { flux in at } x-\text { flux out at }(x+\Delta x), \\
& \Downarrow \\
\frac{d}{d t} \int_{x}^{x+\Delta x} \phi \rho(y, t) d y & =j(x, t)-j(x+\Delta x, t) .
\end{aligned}
$$

Applying Leibniz's rule to the left hand side, we get

$$
\int_{x}^{x+\Delta x} \phi \rho_{t}(y, t) d y=-\int_{x}^{x+\Delta x} j_{x}(y, t) d y .
$$

In general, we have for a continuous function f that

$$
\lim _{\Delta x \rightarrow 0}\left(\frac{1}{\Delta x} \int_{x_{0}}^{x_{0}+\Delta x} f(x) d x\right)=f\left(x_{0}\right),
$$

and hence

$$
\begin{aligned}
\phi \rho_{t}(x, t) & =\lim _{\Delta x \rightarrow 0}\left(\frac{1}{\Delta x} \int_{x}^{x+\Delta x} \phi \rho_{t}(y, t) d y\right) \\
& =-\lim _{\Delta x \rightarrow 0}\left(\frac{1}{\Delta x} \int_{x}^{x+\Delta x} j_{x}(y, t) d y\right)=-j_{x}(x, t) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
j_{x}(x, t) & =\frac{\partial}{\partial x}\left(-\rho \frac{k}{\mu} p_{x}\right)=\frac{\partial}{\partial x}\left(-\rho \frac{k}{\mu} \frac{\partial}{\partial x}(\rho R T)\right) \\
& =-\frac{k R T}{\mu}\left(\rho \rho_{x}\right)_{x}
\end{aligned}
$$

and thus we have

$$
\rho_{t}=K\left(\rho \rho_{x}\right)_{x}
$$

with

$$
K=\frac{k R T}{\mu \phi} .
$$

(b) Since ρ_{F} is even and $\rho_{F}=0$ for $x^{2}>12 C t^{\frac{2}{3}}$, we get

$$
\begin{aligned}
\int_{-\infty}^{\infty} \rho_{F}(x, t) d x & =2 \int_{0}^{\sqrt{12 C t^{2 / 3}}} \rho_{F}(x, t) d x \\
& =2 \int_{0}^{\sqrt{12 C t^{2 / 3}}}\left(C t^{-\frac{1}{3}}-\frac{1}{12} x^{2} t^{-1}\right) d x \\
& =2\left[C t^{-\frac{1}{3}} x-\frac{1}{12} \frac{1}{3} t^{-1} x^{3}\right]_{0}^{\sqrt{12 C t^{2 / 3}}} \\
& =2\left(C t^{-\frac{1}{3}} \sqrt{12 C t^{\frac{2}{3}}}-\frac{1}{12} \frac{1}{3} t^{-1}\left(12 C t^{\frac{2}{3}}\right)^{\frac{3}{2}}\right) \\
& =2\left(\sqrt{12} C^{\frac{3}{2}}-\frac{1}{3} \sqrt{12} C^{\frac{3}{2}}\right)=\frac{4}{3} \sqrt{12} C^{\frac{3}{2}} .
\end{aligned}
$$

With $C=\frac{3^{\frac{1}{3}}}{4}$, we get

$$
\int_{-\infty}^{\infty} \rho_{F}(x, t) d x=\frac{4}{3} \sqrt{12}\left(\frac{3^{\frac{1}{3}}}{4}\right)^{\frac{3}{2}}=\frac{8}{\sqrt{3}} \frac{\sqrt{3}}{8}=1 .
$$

Following the hint and considering the regions separately, we immediately see that ρ_{F} satisfies the given equation in the regions $|x|^{2}>12 C t^{\frac{2}{3}}$. In the region $|x|^{2}<12 C t^{\frac{2}{3}}$, we have

$$
\begin{aligned}
\left(\rho_{F}\right)_{t} & =-\frac{1}{3} C t^{-\frac{4}{3}}+\frac{1}{12} x^{2} t^{-2} \\
\left(\rho_{F}\right)_{x} & =-\frac{1}{6} x t^{-1} \\
\left(\rho_{F}\right)_{x x} & =-\frac{1}{6} t^{-1}
\end{aligned}
$$

and hence

$$
\begin{aligned}
2\left(\rho_{F}\left(\rho_{F}\right)_{x}\right)_{x} & =2\left(\rho_{F}\right)_{x}^{2}+2 \rho_{F}\left(\rho_{F}\right)_{x x} \\
& =2 \frac{1}{6^{2}} x^{2} t^{-2}+2\left(-\frac{1}{6} C t^{-\frac{1}{3}-1}+\frac{1}{6} \frac{1}{12} x^{2} t^{-2}\right) \\
& =\frac{1}{12} x^{2} t^{-2}-\frac{1}{3} C t^{-\frac{4}{3}} \\
& =\left(\rho_{F}\right)_{t},
\end{aligned}
$$

and thus the equation is satisfied by ρ_{F} also in this region.
(c) Because $\int_{-\infty}^{\infty} \rho_{F} d x=1$, we have that

$$
f(0)=\int_{-\infty}^{\infty} \rho_{F}(x, t) f(0) d x
$$

and applying this and that $\rho_{F} \geq 0$, we get

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty} \rho_{F}(x, t) f(x) d x-f(0)\right| & =\left|\int_{-\infty}^{\infty} \rho_{F}(x, t)(f(x)-f(0)) d x\right| \\
& \leq \int_{-\infty}^{\infty} \rho_{F}(x, t)|f(x)-f(0)| d x \\
& =\int_{-\sqrt{12 C t^{2 / 3}}}^{\sqrt{12 C t^{2 / 3}}} \rho_{F}(x, t)|f(x)-f(0)| d x \\
& \leq \max _{|x| \leq \sqrt{12 C t^{2 / 3}}}|f(x)-f(0)| \cdot \int_{-\infty}^{\infty} \rho_{F}(x, t) d x \\
& =\max _{|x| \leq \sqrt{12 C t^{2 / 3}}}|f(x)-f(0)|
\end{aligned}
$$

Now we have
$\lim _{t \rightarrow 0}\left|\int_{-\infty}^{\infty} \rho_{F}(x, t) f(x) d x-f(0)\right| \leq \lim _{\sqrt{12 C t^{2 / 3} \rightarrow 0}}\left(\max _{|x| \leq \sqrt{12 C t^{2 / 3}}}|f(x)-f(0)|\right)=0$,
since f is continuous, and $t \rightarrow 0$ implies $\sqrt{12 C t^{2 / 3}} \rightarrow 0$.
A fundamental solution is a solution with initial data $\rho_{F, 0}=\delta_{0}$, where the delta function $\delta_{0}(x)$ is a function such that

$$
\int_{-\infty}^{\infty} f(x) \delta_{0}(x) d x=f(0)
$$

for any continuous function f. We have that

$$
\int_{-\infty}^{\infty} \rho_{F}(x, 0) f(x) d x=\lim _{t \rightarrow 0} \int_{-\infty}^{\infty} \rho_{F}(x, t) f(x) d x=f(0)
$$

and hence the initial solution $\rho_{F}(x, 0)$ of ρ_{F} is by definition a delta function.
(d) The equation is given, and as initial solution we follow the hint and use a positive point source with integral 2. Thus we get

$$
\begin{cases}h_{t} & =\left(h^{2}\right)_{x x} \tag{1}\\ h(x, 0) & =2 \delta_{0}\end{cases}
$$

Following a similar deduction as when solving problem (b), we get that

$$
\int_{-\infty}^{\infty} \rho_{F}(x, t) d x=2 \quad \text { when } C=\left(\frac{3}{16}\right)^{\frac{1}{3}}
$$

We therefore have that equation (4) in the problem set is a solution to (1) above, with $C=\left(\frac{3}{16}\right)^{\frac{1}{3}}$. We then have that $h>0$ for $|x|^{2}<12 C t^{\frac{2}{3}}$, and hence the extension of wet ground at $t=10$ is given by

$$
|x|=\sqrt{12 C t^{\frac{2}{3}}}=\sqrt{12\left(\frac{3}{16}\right)^{\frac{1}{3}} 10^{\frac{2}{3}}}=12^{\frac{1}{2}}\left(\frac{3}{16}\right)^{\frac{1}{6}} 10^{\frac{1}{3}} \approx 5.65
$$

2 (a) Denote by c the concentration of contaminants. There are two sources of flux. The first is the diffusive flux, given by Fick's law:

$$
j_{d}=-\kappa \frac{\partial c}{\partial x}
$$

The second is the advective flux:

$$
j_{a}=U c .
$$

Together, they form the total flux:

$$
j=j_{d}+j_{a}=-\kappa \frac{\partial c}{\partial x}+U c
$$

A point discharge will be carried a length L down the river after a time $T=$ L / U. The discharge will spread out due to diffusion; the extent of this can be measured as in exercise 2c), i.e. the spread is proportional to $\sqrt{\kappa T}=\sqrt{\kappa L / U}$.
(b) Using the flux from a) and noting that the conversion of substance A into B constitutes production terms, we state the conservation laws in integral form for an interval $\left[x_{1}, x_{2}\right]$ (we omit the t-dependence for readability):

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{x_{1}}^{x_{2}} a(x) \mathrm{d} x & =\kappa\left(\frac{\partial a}{\partial x}\left(x_{2}\right)-\frac{\partial a}{\partial x}\left(x_{1}\right)\right)-U\left(a\left(x_{2}\right)-a\left(x_{1}\right)\right)-\int_{x_{1}}^{x_{2}} \mu a(x) \mathrm{d} x \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \int_{x_{1}}^{x_{2}} b(x) \mathrm{d} x & =\kappa\left(\frac{\partial b}{\partial x}\left(x_{2}\right)-\frac{\partial b}{\partial x}\left(x_{1}\right)\right)-U\left(b\left(x_{2}\right)-b\left(x_{1}\right)\right)+\int_{x_{1}}^{x_{2}} \mu a(x)-\lambda b(x) \mathrm{d} x .
\end{aligned}
$$

To obtain the differential form of the conservation equation, we take $x_{2}=$ $x_{1}+\Delta x$, divide by Δx and let $\Delta x \rightarrow 0$. This yields

$$
\begin{aligned}
& \frac{\partial a}{\partial t}=\kappa \frac{\partial^{2} a}{\partial x^{2}}-U \frac{\partial a}{\partial x}-\mu a \\
& \frac{\partial b}{\partial t}=\kappa \frac{\partial^{2} b}{\partial x^{2}}-U \frac{\partial b}{\partial x}+\mu a-\lambda b
\end{aligned}
$$

(c) We now neglect diffusion and consider the convection-reaction equations:

$$
\begin{array}{ll}
\frac{\partial a}{\partial t}+U \frac{\partial a}{\partial x}=-\mu a, & x>0, t>0 \\
\frac{\partial b}{\partial t}+U \frac{\partial b}{\partial x}=\mu a-\mu b & x>0, t>0
\end{array}
$$

We need some boundary conditions. Since there is a constant rate of discharge of substance A at $x=0$, we have a constant flux $j_{A}=U a=q_{0}$ at $x=0, t>0$. Additionally, we may assume that the river is uncontaminated at $t=0$, and that there is no discharge of substance B at $x=0$. This gives the boundary conditions:

$$
\begin{aligned}
a(0, t) & =\frac{q_{0}}{U}, & t>0 \\
a(x, 0) & =0, & x>0 \\
b(0, t) & =0, & t>0 \\
b(x, 0) & =0, & x>0 .
\end{aligned}
$$

We solve the PDEs using the method of lines. Taking $z(t)=a(x(t), t)$, we get

$$
\begin{aligned}
\dot{z} & =-\mu z \\
\dot{x} & =U
\end{aligned}
$$

Solving these ODEs yields

$$
\begin{aligned}
& z(t)=z\left(t_{0}\right) \mathrm{e}^{\mu\left(t-t_{0}\right)} \\
& x(t)=U\left(t-t_{0}\right)+x_{0}
\end{aligned}
$$

If $t_{0}=0$, we have $z\left(t_{0}\right)=0$. Otherwise, $z\left(t_{0}\right)=\frac{q_{0}}{U}$. Now, to solve for $b(x, t)$, we take $w(t)=b(x(t), t)$, observing that the characteristics for a and b are identical. This gives us the ODE for w :

$$
\begin{aligned}
\dot{w}+\mu w & =\mu z \\
\Rightarrow \quad \dot{w}+\mu w & =\frac{\mu q_{0}}{U} \mathrm{e}^{\mu\left(t-t_{0}\right)}
\end{aligned}
$$

where we have disregarded the trivial case of characteristics starting at $t=0$, which result in $b \equiv 0$. Now, using the hint, we obtain

$$
w(t)=C_{1} \mathrm{e}^{\mu t}+\frac{\mu q_{0}}{U} t \mathrm{e}^{\mu\left(t-t_{0}\right)}
$$

and applying the initial condition $w\left(t_{0}\right)=0$, we get

$$
w(t)=\left(t-t_{0}\right) \frac{\mu q_{0}}{U} \mathrm{e}^{\mu\left(t-t_{0}\right)}
$$

yielding

$$
b\left(U\left(t-t_{0}\right), t\right)=\left(t-t_{0}\right) \frac{\mu q_{0}}{U} \mathrm{e}^{\mu\left(t-t_{0}\right)}
$$

We now "invert" by reintroducing $x=U\left(t-t_{0}\right)$ and get

$$
b(x, t)= \begin{cases}x \frac{\mu q_{0}}{U^{2}} \mathrm{e}^{\frac{\mu x}{U}}, & x<U t \\ 0, & x>U t\end{cases}
$$

To obtain the point of highest concentration of B, we fix a t and observe that, disregarding the case with $b=0$:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} b(x, t) & =\frac{\mu q_{0}}{U^{2}} \mathrm{e}^{\frac{\mu x}{U}}\left(1-\frac{\mu}{U} x\right)=0 \\
\Rightarrow x & =\frac{U}{\mu}
\end{aligned}
$$

This x is attainable if $t>\frac{1}{\mu}$. Otherwise, since $\frac{\mathrm{d}}{\mathrm{d} x} b(x, t)>0$ for $x<\frac{U}{\mu}$, the maximum is attained at $x=U t$.

3 (a) We do the computations with a segment with width B and introduce density, flux and sources. Here we assume that the density of sand ρ is a constant. The flux then becomes ρj and the source function will be $\rho q(x ; t)$. (However, both B and ρ drop out from the relations at the end, such that we could as well compute per unit width, and with $\rho=1$).

Our control volume has width B and extends from $x=x_{0}$ to $x=x_{1}$. Thus, we obtain the general (one-dimensional) conservation law
$\frac{d}{d t} \int_{x_{0}}^{x_{1}} \rho B(b(x, t)-h) d x+\left(-k \frac{\partial b}{\partial x}\left(x_{1}, t\right)+k \frac{\partial b}{\partial x}\left(x_{0}, t\right)\right) \rho B=\int_{x_{0}}^{x_{1}} q(x, t)(\rho B) d x$.
or

$$
\frac{d}{d t} \int_{x_{0}}^{x_{1}}(b(x, t)-h) d x+\left(-k \frac{\partial b}{\partial x}\left(x_{1}, t\right)+k \frac{\partial b}{\partial x}\left(x_{0}, t\right)\right)=\int_{x_{0}}^{x_{1}} q(x, t) d x
$$

If we let $x_{1} \rightarrow x_{0}$ and divide by $\left(x_{1}-x_{0}\right)$, we obtain

$$
\frac{\partial}{\partial t}(b-h)=\frac{\partial b}{\partial t}=k \frac{\partial^{2} b}{\partial x^{2}}+q
$$

(b) In this case, the source is localized at $x=0$, such that the equation for $x>0$ becomes just $b_{t}=k b_{x x}$. We scale b with h and the solution is

$$
b=h f(x, t, k)
$$

It is not obvious that we have a similarity solution since the depth h could be a length scale, but this length is not associated with the horizontal length. The problem is completely equivalent to a heat conduction problem where the temperature is constant and equal to T_{0} at $x=0$, and T_{∞} when $x=\infty$. The temperature could then be written as $T(x, t)=T_{0}+\left(T_{\infty}-T_{0}\right) \tau(x, t, k)$, and we obtain a similarity solution. Similarly to the temperature, we should be able to write the solution for b as

$$
b=-h \beta\left(\frac{x}{\sqrt{k t}}\right)=-h \beta(\eta), \eta=\frac{x}{\sqrt{k t}},
$$

where $\beta(0)=0$ and $\beta(\eta) \rightarrow 1$ when $\eta \rightarrow \infty$. Entering this into the equation after dividing by $-h$ lead to

$$
\beta_{t}-k \beta_{x x}=-\frac{1}{2} \frac{x}{\sqrt{k}} \frac{1}{t^{3 / 2}} \beta^{\prime}-k \frac{1}{k t} \beta^{\prime \prime}=0
$$

or

$$
\beta^{\prime \prime}+\frac{\eta}{2} \beta^{\prime}=0
$$

This is the equation given in the problem. By the hint and conditions $b(0, t)=0$, $b(\infty, t)=-h$ we see that

$$
b(x, t)=-h \operatorname{erf}\left(\frac{x}{\sqrt{k t}}\right)
$$

(c) The sand and clay volume at sea $\left(x \geq x_{0}\right.$ here $)$ is given by

$$
\begin{aligned}
V(t) & =\int_{x_{0}}^{\infty} B(h-b(x, t)) d x \\
& =\int_{x_{0}}^{U t-x_{0}} B(h-b(x, t)) d x+\int_{U t-x_{0}}^{\infty} B(h-b(x, t)) d x \\
& =B h U t+\int_{0}^{\infty} b_{0}(y) d y
\end{aligned}
$$

where B was determined in a). By definition, $q_{0}=V^{\prime}(t)$, and hence

$$
U=\frac{q_{0}}{B h}
$$

If we let $\eta=x-U t-x_{0}$ and put b into the equation where $x>U t+x_{0}$, we obtain

$$
-U b_{0}^{\prime}=k b_{0}^{\prime \prime}
$$

thus

$$
b_{0}^{\prime \prime}+\frac{U}{k} b_{0}^{\prime}=0
$$

with general solution

$$
b_{0}(\eta)=C_{1}+C_{2} \exp \left(-\frac{U}{k} \eta\right)
$$

It is required that

$$
\begin{aligned}
b_{0}(0) & =0, \\
b_{0}(\infty) & =-h,
\end{aligned}
$$

such that the solution becomes

$$
b_{0}(\eta)=h\left(\exp \left(-\frac{U}{k} \eta\right)-1\right)
$$

Introducing the original variables leads to

$$
b(x, t)= \begin{cases}0, & x \leq s(t)=U t+x_{0} \\ h\left(\exp \left(-\frac{U}{k}\left(x-U t-x_{0}\right)\right)-1\right), & x>U t+x_{0}\end{cases}
$$

