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Suggested solution

Problem 1

a Any physically meaningful relation Φ(R1, . . . , Rn) = 0 (with Rj 6= 0) is equivalent to a rela-
tion of the form Ψ(π1, . . . , πn−r) = 0 involving (a maximal set of) independent dimensionless
combinations of the given variables.

b Relevant quantities and their units for waves in deep water:

Quantity V L g ρ
Units m s−1 m m s−2 kg m−3

The only dimensionless combination of these is V 2/(Lg) (and powers thereof). By Bucking-
ham’s pi theorem the only physically meaningful relation between these is can be written
V 2/(Lg) = constant, which can also be written as

V = C
√

Lg.

For waves dominated by surface tension the table looks like

Quantity V L σ ρ
Units m s−1 m kg s−2 kg m−3

whose single dimensionless combination is ρV 2L/σ, which leads to

V = C
σ

ρL
.

c The critical length L0 must be a function of g, ρ, and σ, whose single dimensionless combi-
nation is ρgL2

0/σ. So we expect the critical length to be given by a particular value of this
expression. Having no further information, we might guess this value to be close to 1, leading
to

L0 ≈
√

σ

ρg
≈ 2.6 mm.

Problem 2

A noticeable proportion of the heat input must penetrate to a depth of L ≈ 1 cm in t ≈ 30 s
for the measurement to satisfy the given requirements. But how to estimate this depth?
Thermal properties for water, fat, and protein have been given, and we must expect the
properties for meat or fish to be some sort of average of these: Neither larger than the largest
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of the individual values, nor smaller than the smallest. The only dimensionless combination
of the quantities L, t, ρ, c, k is kt/(ρcL2) (or powers thereof), leading to the estimate

L ≈

√
kt

ρc

in which we optimistically insert the largest available value for k (that for water) and the
smallest one for c (protein) together with t = 30 s, or

L ≈
√

0.56 · 30
1000 · 1300

m ≈ 3.6 mm

which is quite a bit too small, particularly because the heat must not only penetrate three
times deeper, but the influence of the thermal properties at that depth must make it back
to the surface where it can be measured. Thus we conclude that this device is likely to
only at best yield properties of the upper millimeter or two of the sample, and so fails the
requirements.

We should note that in the above discussion we replaced a constant arising from dimensional
analysis by 1 without further comment. However, in the case of the heat equation and its
fundamental solution (in one space dimension)

∂Φ
∂t

=
∂2Φ
∂x2

, Φ(x, t) =
1√
2πt

exp
(
− x2

4t

)
this practice can be defended – or maybe we should use twice the value, as the exponent
equals −1 just when x = 2

√
t – but this does not change the conclusion very much.

One can also arrive more directly at these conclusions by recognizing that the non-scaled
heat equation can be written in the form

∂T

∂t
=

k

ρc
∆T

where the diffusivity (the fraction on the right hand side) has units m s−1, scaling the equa-
tion correspondingly, and using the above-mentioned properties of the solutions of the heat
equation.

Problem 3

Writing u′ for the derivative of u with respect to τ , note that ü = u′′/(1 + εc1 + O(ε2))2 =
u′′ · (1 − 2εc1 + O(ε2)). Put now u = u0 + εu1 + O(ε2) in Duffing’s equation, and rearrange
to get

(1− 2εc1)(u′′0 + εu′′1) + (u0 + εu1 + εu3
0) = O(ε2)

which, after expanding and collecting like powers of ε, yields the two equations

u′′0 + u0 = 0, u′′1 + u1 − 2c1u
′′
0 + u3

0 = 0

2
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The given boundary conditions imply

u0(0) = a, u′0(0) = u1(0) = u′1(0) = 0.

Thus we arrive at
u0(τ) = a cos τ.

Furthermore, the u1 equation now becomes

u′′1 + u1 +
(3

4
a3 + 2ac1

)
cos τ +

1
3
a3 cos 3τ = 0

which, with the above initial values, has the solution

u1(τ) =
1
24

a3(cos τ − cos 3τ)−
(
ac1 +

3
8
a3

)
τ sin τ︸ ︷︷ ︸

secular term

.

Clearly, the secular term vanishes when c0 = −3a2/8, which leads to the estimated period:

T = 2π
(
1− 3

8
a2ε + O(ε2)

)
.

Problem 4

Try first simply setting ε = 0, which immediately yields the “outer” solution

u0(x) =
1

2− x2

which does satisfy the boundary condition at x = 0, but not the one at x = 1. So we look
for a boundary layer at x = 1. Try x = 1− δX. Putting u(x) = U(X) = U

(
(1− x)/δ

)
in the

equation, we arrive at
ε

δ2
U ′′ −

(
1 + 2δX − (δX)2

)
U + 1 = 0, U(0) = 0

(The initial condition for U comes from the boundary condition for u at x = 1.) We should
put δ =

√
ε to allow the first term to balance the last term in the equation. Then replacing

the δ by 0, we get the equation for the lowest order approximation of the inner function:
U ′′

0 − U0 + 1 = 0. This has the general solution U0 = 1 + AeX + Be−X . The initial condition
U0(0) = 0 tells us that 1 + A + B = 0. Now we match this to the outer solution:

lim
X→∞

U0(X) = lim
x→1

u0(x) = 1

which (fortunately!) can be satisfied by setting A = 0. Thus B = −1, and we obtain the lowest
order approximation by adding together the outer and inner solution, then subtracting their
common part (which is 1):

u ≈ 1
2− x2

− exp
x− 1√

ε
.
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Problem 5

a Energy balance in one resistor:

C
dT ∗j
dt∗

= R∗(T ∗j )(I∗j )2 −A(T ∗j − Ta)−B(T ∗j − T ∗3−j) (1)

The lefthand side is the rate of increase of thermal energy in the resistor. This balances
the rate of added energy from the current in the resistor (the first term on the righthand
side) and lost heat to the surroundings (the second term, assuming the surroundings have a
temperature Ta) and to the other resistor (final term).

To this equation we must add the two equations

R∗(T ∗1 )I∗1 = R∗(T ∗2 )I∗2 , I∗1 + I∗2 = I. (2)

(The voltage drop across the two resistors must be the same, and the sum of the two currents
is I.)

We pick scalings given by

I∗j = IIj , T ∗j = Ta + ΘTj , t∗ =
C

A
t.

It seems reasonable to scale currents so, since the non-dimensional current Ij then takes
values between 0 and 1. Similarly we added the constant Ta in the expression for T ∗j , since
non-dimensional temperature Tj = 0 then corresponds to the surrounding temperature. (We
cannot give a value for the scaling factor Θ for temperature here, since not enough information
has been given. But this value should be chosen so that R(T ) becomes a well scaled function.)
There were at least two likely choices for the time scale. We chose the time scale related to
cooling due to heat transfer to the surroundings, but we might equally reasonably have chosen
the time scale C/B related to the heat transfer between the resistors.

Substituting all our scalings into (1) and dividing by AΘ yields

dTj

dt
=

I2

AΘ
R∗(T ∗j )︸ ︷︷ ︸

R(Tj)

I2
j − Tj − β(Tj − T3−j), β =

B

A
.

Here, the proper scale of resistance follows from the equation as shown. The same scalings
substituted in (2) produces the other two equations of the given scaled model.

b Solving the algebraic equations (R(T1)I1 = R(T2)I2 and I1 + I2 = 1) for I1 and I2 we get

Ij =
R(T3−j)
R1 + R2

(j = 1, 2)

which, when substituted into the differential equations, yields the system

Ṫj =
R(Tj)R(T3−j)2(
R(T1) + R(T2)

)2 − Tj − β(Tj − T3−j) (j = 1, 2).

4
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The linearization of this at a presumed symmetric equilibrium point will be given by the
Jacobian of the righthand side:

M =
[
−(β + 1) β + R′/4
β + R′/4 −(β + 1)

]
where R′ = R′(T1) = R′(T2). The characteristic equation for this matrix is (β + 1 + λ)2 −
(β + R′/4)2, which has roots

λ = −β − 1± (β + R′/4) (λ = −1 + R′/4, λ = −1− 2β −R′/4).

The equilibrium is stable if and only if both these eigenvalues are negative, in other words
−1 + R′/4 < 0 and −1− 2β−R′/4 < 0. These two equations are equivalent to −4(1 + 2β) <
R′ < 4.

Problem 6

a The speed of individual cars is assumed to be a decreasing function of the traffic density u∗.
If cars on a nearly empty road manage a top speed of V and traffic comes to a complete stop
when the density is umax, then this model simply draws a straight line, assuming that the
speed of the individual car is V · (1−u∗/umax). The corresponding flux of cars is obtained by
multiplying this by the density u∗, leading to the flux function f∗(u∗) = V ·u∗ ·(1−u∗/umax).
The corresponding conservation law is (on differential form)

∂u∗

∂t∗
+ ∂f∗(u∗)∂x∗ = 0.

Clearly, a suitable scale for u∗ is umax, so we put u∗ = umaxu where u is the dimensionless
density. Introduce a time scale T and a length scale X via t∗ = Tt and x∗ = Xx. Introduce
these scales in the above equation:

umax

T

∂u

∂t
+

1
X

∂

∂x

(
V · umaxu(1− u)

)
= 0.

Multiply this by T/umax in order to arrive at the desired

∂u

∂t
+

∂f(u)
∂x

= 0, f(u) = u− u2

provided the scales have been chosen so that V = XT .

b The Rankine-Hugoniot condition states that the shock speed σ of a shock with left and right
values ul and ur satisfies the relation

σ =
f(ur)− f(ul)

ur − ul
.

5
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t

1 2
x

Remember that characteristics have speed f ′(u) = 1 − 2u.
Particular speeds of interest for this example are f ′(1

2) =
0 and f ′(1

4) = 1
2 . We see that a shock arises at x = 0

with speed
(
f(1

2)− f(1
4)

)
/(1

2 −
1
4) = 1

4 . A rarefaction wave
centered at x = 1 covers speeds from 0 to 1

2 , so the lefthand
edge of that wave is stationary, and is hit by the shock wave
at time t = 4. After that time the shock will slow down and
weaken, as its left state ul = 1

4 (a constant) while its right
state ur decreases from ur = 1

2 towards 1
4 . (The picture

on the right is not computed, but drawn with a drawing
program.)

c From left to right in the picture below are characteristics and shocks for the three cases
0 < u0 < 1

2 −
1
4

√
2, 1

2 −
1
4

√
2 < u0 < 1

2 , and 1
2 < u0 < 1. The constant state in the left

picture solves f(u) = 2f(u0) with u0 < u < 1
2 . The constant state in the middle picture is

u = 1
2 + 1

4

√
2, which solves f(u) = 1

4 . And that in the righthand picture solves 2f(u) = f(u0),
u0 < u < 1.
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