Course content

In this course, we will develop and analyse schemes for solving PDEs. We will (more or less) follow the following procedure:

- **1** Given a problem (PDE + Ω + IC/BC)
- Construct a scheme
- Implement and test the scheme
- O Do an error analysis
- Verify theoretical results numerically
- Explain and if possible circumvent unexpected behaviour

Numerical schemes:

- Finite difference methods (FDM)
- Finite element methods (FEM)

Linear PDEs in 2D

The main focus is on linear PDEs in 2D,

$$au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + gu = f$$
 in Ω ,

where $\Omega \in \mathbb{R}^2$ is the domain, $u: \Omega \to \mathbb{R}$ is the solution and $a, b, \dots, f: \Omega \to \mathbb{R}$ are coefficients (also called data).

These are classified by:

Classification		Model problems	
$b^2 - ac < 0$,	elliptic	$u_{xx} + u_{yy} = f,$	Poisson equation
$b^2 - ac = 0,$	parabolic	$u_t = u_{xx},$	Heat equation
$b^2-ac>0,$	hyperbolic	$u_{tt}=u_{xx},$	Wave equation

Boundary/initial conditions are needed for unique solutions:

Initial conditions (IC): u given at t = 0,

Boundary conditions (BC): u or ∂u_n given at $\partial \Omega$.