
4 Runge-Kutta methods

The Euler method, as well as the improved and modified Euler methods are all examples on
explicit Runge-Kutta methods (ERK). Such schemes are given by

k1 = f(tn, yn), (7)

k2 = f(tn + c2h, yn + ha21k1),

k3 = f
(

tn + c3h, yn + h(a31k1 + a32k2)
)

,

...

ks = f
(

tn + csh, yn + h
s−1
∑

j=1

asjkj

)

,

yn+1 = yn + h

s
∑

i=1

biki,

where ci, aij and bi are coefficients defining the method. We always require ci =
∑s

j=1 aij .
Here, s is the number of stages, or the number of function evaluations needed for each step.
The vectors ki are called stage derivatives. The improved Euler method is then a two-stage
RK-method, written as

k1 = f(tn, yn),

k2 = f(tn + h, yn + hk1),

yn+1 = yn +
h

2
(k1 + k2).

Also implicit methods, like the trapezoidal rule,

yn+1 = yn +
h

2

(

f(tn, yn) + f(tn + h, yn+1)
)

can be written in a similar form,

k1 = f(tn, yn),

k2 = f
(

tn + h, yn +
h

2
(k1 + k2)

)

,

yn+1 = yn +
h

2
(k1 + k2).

But, contrary to what is the case for explicit methods, a nonlinear system of equations has to
be solved to find k2.

Definition 4.1. An s-stage Runge-Kutta method is given by

ki = f
(

tn + cih, yn + h

s
∑

j=1

aijkj

)

, i = 1, 2, · · · , s,

yn+1 = yn + h

s
∑

i=1

biki.

9

The method is defined by its coefficients, which is given in a Butcher tableau

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...

cs as1 as2 · · · ass

b1 b2 · · · bs

, where ci =

s
∑

i=1

aij , i = 1, · · · , s.

The method is explicit if aij = 0 whenever j ≥ i, otherwise implicit.

Example 4.2. The Butcher-tableaux for the methods presented so far are

0 0

1

0 0 0

1 1 0

1
2

1
2

0 0 0

1
2

1
2 0

0 1

0 0 0

1 1
2

1
2

1
2

1
2

Euler improved Euler modified Euler trapezoidal rule

When the method is explicit, the zeros on and above the diagonal is usually ignored. We
conclude this section by presenting the maybe most popular among the RK-methods over
times, The 4th order Runge-Kutta method (Kutta – 1901):

k1 = f(tn, yn)

k2 = f(tn + h
2 , yn + h

2k1)

k3 = f(tn + h
2 , yn + h

2k2)

k4 = f(tn + h, yn + hk3)

yn+1 = yn + h
6 (k1 + 2k2 + 2k3 + k4)

or

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

. (8)

4.1 Order conditions for Runge-Kutta methods.

The following theorem were proved in Exercise 2, task 2:

Theorem 4.3. Let

y′ = f(t, y), y(t0) = y0, t0 ≤ t ≤ tend

be solved by a onestep method

yn+1 = yn + hΦ(tn, yn;h), (9)

with stepsize h = (tend − t0)/Nstep. If

1. the increment function Φ is Lipschitz in y, and

2. the local truncation error dn+1 = O(hp+1) ,

then the method is of order p, that is, the global error at tend satisfies

eNstep = y(tend) − yNstep = O(hp).

10

A RK method is a onestep method with increment function Φ(tn, yn;h) =
∑s

i=1 biki. It is
possible to show that Φ is Lipschitz in y whenever f is Lipschitz and h ≤ hmax, where hmax is
some predefined maximal stepsize. What remains is the order of the local truncation error. To
find it, we take the Taylor-expansions of the exact and the numerical solutions and compare.
The local truncation error is O(hp+1) if the two series matches for all terms corresponding to
hq with q ≤ p. In principle, this is trivial. In practice, it becomes extremely tedious (give it a
try). Fortunately, it is possible to express the two series very elegant by the use of B-series and
rooted trees. Here, we present how this is done, but not why it works. A complete description
can be found in the note the B-series tutorial.

B-series and rooted trees

We assume that the equation is rewritten in autonomous form

y(t)′ = f(y(t)), y(t0) = y0. (10)

The Taylor expansion of the exact solution of (10) is given by

y(t0 + h) = y(t0) + hy′(t0) +
h

2
y′′(t0) + · · · +

hp

p!
y(p)(t0) + · · · . (11)

From the ODE (10) and repeated use of the chain rule, we get y′ = f , y′′ = fyf , y′′′ = fyyff +
fyfyf , etc. Each higher derivative of y is split into several terms, denoted as elementary

differentials. These can be represented by rooted trees. A node • represents f . A branch out
from a bullet represent the derivative of f with respect to y. As the chain rule apply, this
will always means that we multiply by y′ = f , represented by a new node on the end of the
branch. We get the following table:

Elementary differentials corresponding trees

y′ = f •

y′′ = fyf •
•

y′′′ = fyyff + fyfyf •
• •

•
•
•

yiv = fyyyfff + fyyfyff + fyyffyf •
• • •

•
•
•
•

•
• •
•

+fyyffyf + fyfyyff + fyfyfyf •
• •
•

•
•
• •

•
•
•
•

The elementary differentials corresponding to the trees •
•
•
• and •

• •
•

are equal, thus

yiv = fyyyfff + 3fyyfyff + fyfyyff + fyfyfyf.

And we can go on like that. For each tree τ with p nodes we construct a set of total p new
trees with p+1 nodes by adding one new node to an existing node in τ . This procedure might
produce the same tree several times, and the total number of ways to construct a distinct tree
is denoted by α(τ). Let T be the set of all possible, distinct, rooted trees constructed this
way, and let τ ∈ T . A tree with p nodes corresponds to one of the terms in y(p), thus we call
this the order of the tree and denote it |τ |. The elementary differentials corresponding to a
tree is denoted F (τ)(y).

11

Example 4.4.

For τ = •
•
• •

we have |τ | = 4, F (τ)(y) = fyfyyff, α(τ) = 1.

For τ = •
•
•
•

we have |τ | = 4, F (τ)(y) = fyyfyff, α(τ) = 3.

Here, f and its differentials are evaluated in y.

Putting this together: If y(t) is the solution of (10), then

y(p)(tn) =
∑

τ ∈ T

|τ | = p

α(τ)F (τ)(y(tn)).

Insert this into (11), and we can write the exact solution as a B-series:

y(tn + h) = y(tn) +
∑

τ∈T

h|τ |

|τ |!
α(τ) F (τ)(y(tn)). (12)

The numerical solution after one step can also be written as a B-series, but with some different
coefficients

yn+1 = yn +
∑

τ∈T

h|τ |

|τ |!
γ(τ)ϕ(τ) α(τ) F (τ)(yn). (13)

where γ(τ) is an integer, and ϕ(τ) depends on the method coefficients, given in the Butcher
tableau in Definition 4.1. Both can be found quite easily by the following procedure: Take
a tree τ . Label the root with i, and all other non-terminal nodes by j, k, l, · · · . The root
correspond to bi. A branch between a lower node j and an upper node k correspond to
ajk. A terminal node, connected to a node with label k corresponds to ck. φ(τ) is found by
multiplying all these coefficients, and then take the sum over all the indices from 1 to s.

Example 4.5.

The tree τ = •
•
•
• •

•
•

can be labelled •i

j•
k•
• •

•l

•

so that ϕ(τ) =

s
∑

i,j,k,l=1

biaijajkc
2
kailcl.

A tree τ can also be described by its subtrees. Let τ = [τ1, τ2, · · · , τl] be the tree composed
by joining the root of the subtrees τ1, τ2, · · · , τl to a joint new root. The term γ(τ) is defined
recursively by

• γ(•) = 1.

• γ(τ) = |τ | · γ(τ1) · · · γ(τl) for τ = [τ1, τ2, · · · , τl].

12

Example 4.6.

τ = •
• = [•], γ(τ) = 2 · 1 = 2

τ = •
• • = [•, •], γ(τ) = 3 · 1 · 1 = 3

τ = •
•
• •

= [•
• •], γ(τ) = 4 · 3 = 12

τ = •
•
•
• •

•
•

= [•
•
• •

, •
•], γ(τ) = 7 · 12 · 2 = 168

By comparing the two series (12) and (13) with y(tn) = yn we can state the following theorem:

Theorem 4.7. A Runge-Kutta method is of order p if and only if

ϕ(τ) =
1

γ(τ)
∀τ ∈ T, |τ | ≤ p.

The order conditions up to order 4 are:

τ |τ | ϕ(τ) = 1/γ(τ)

• 1
∑

bi = 1

•
• 2

∑

bici = 1/2

•
• • 3

∑

bic
2
i = 1/3

•
•
•

∑

biaijcj = 1/6

•
• • • 4

∑

bic
3
i = 1/4

•
• •
•

∑

biciaijcj = 1/8

•
•
• •

∑

biaijc
2
j = 1/12

•
•
•
•

∑

biaijajkck = 1/24

13

