Orthogonal polynomials.

The aim of this section is to construct “optimal” quadrature formulas. To be more specific,
given the integral

b
L(f) = / w(a)f(x)dx (1)

in which w(x) is a fixed, positive function. We want to approximate this using a quadrature
formula on the form

Qu(f) =D Aif(w:).
=0

Such a formula can be constructed as follows: Choose n + 1 distinct nodes, g, 1, - , Ty In
the interval [a,b]. Construct the interpolation polynomial

pal@) = 3 f(e), @) =[]
i=0 j=0"" "
J#i
An approximation to the integral is then given by
b m b
QD = [ wepa@de =Y aif@). A= [w@b@de. @)
a i=0 a

The quadrature formula is of precision m if

Ly(p) :Qw(p)a for all p € Py,.

From the construction, these quadrature formulas is of precision at least n. The question is
how too choose the nodes z;, ¢ = 0,...,n giving m as large as possible. The key concept here
is orthogonal polynomials.

Orthogonal polynomials.

Given two functions f, g € C[a,b]. We define an inner product of these two functions by

b
<f,9 >:/ w(z) f(x)g(x)dx, w(zx) > 0. (3)

Thus the definition of the inner product depends on the integration interval [a, b] and a given
weight function w(x). If f,g,h € Cla,b] and o € R then

(f,9)w = (9, flw
(f+9, 0w =(f,R)w+ (g h)w
(af, g)w = alf, g)w
(f, flrw >0, and  (f,flw=0% f=0.

From an inner product, we can also define a norm on C|a, b] by

1115 = (£ flw-



For the inner product (3) we also have

b
(@f, gV = / w(a)ef (@)g(2)de = (f, 2g)u (4)

Our aim is now to create an orthogonal basis for IP, that is, create a sequence of polynomials
¢r(z) of degree k (no more, no less) for k =0,1,2,3,... such that

(¢i, dj)w =0 forall 7+ j.

If we can make such a sequence, then

II~:Dn—1 == Span{¢07 ¢17 e 7¢n—1} and <¢mp>w =0 fOI‘ all p S II?)'n,—l-

Let us now find the sequence of orthogonal polynomials. This is done by a Gram-Schmidt
process:
Let ¢9 = 1. Let ¢ = x — By where Bj is given by the orthogonality condition:

z,1
0= (61,0000 = (. ) — Bu(l, 1} =  By= <||1ng'
w
Let us now assume that we have found ¢;, j =0,1,...,k — 1. Then, let
k—1
G = Thp_1— Y _ 0.
§=0

Clearly, ¢y, is a polynomial of degree k, and «; can be chosen so that (¢, ¢i)w = 0, i =
0,1,...,k—1,0r

k—1

(Ok: Bi)w = (@Pr_1, Bi)w— D (i, shw = (TPk—1, $i)w—0ildi, $i)w =0, i =0,1,-- k=1

Jj=0

So a; = (xdp_1, Pi)w/{Pi, Pi)w. But we can do even better. Since ¢j_; is orthogonal to all
polynomials of degree k — 2 or less, we get

<x¢k*17¢i>w = <¢k717$¢i>w =0 for i+1<k—1.
So, we are left only with ag_1 and ag_o. The following theorem concludes the argument:

Theorem 1. The sequence of orthogonal polynomials can be defined as follows:

do(x) =1, p1(x) =2 — By

ok(r) = (x — Br)opr—1(x) — Crdr—a(x), k>2

with

(TPr—1, Pk—1)w
| pr—1ll%,

(Zop—1,0r—2)w _ |lPe—1ll2

on—2llz,  lldr—llf,

By = Cy =



The last simplification of C} is given by:
(TPr—1, Pk—2)w = (Pk—1, TPr—2)w
Gr—1 = TPp—2 — Br_1¢r—2 — Cr—1Pr_3.

Solve the second with respect to x¢y_s, replace it into the right hand side of the first expression,
and use the orthogonality conditions.

Example 2. For the inner product

1
(f.9) = / falgla)do

we get
¢o =1, (z¢o, Ppo) = 0, (00, Po) = 2, By =0,
¢1 =z, (xp1, 1) =0, (D1,01) = %; By =0, Cy = é
po = 2% — % (g2, Pp2) =0, (P2, P2) = 4%, B; =0, C3 = 1%
$3 =2 — gx, etc.

These are the well known Legendre polynomials.

Example 3. Let w(z) =1/v1— 22, and [a,b] = [-1,1]. We then get the sequence of polyno-
maials:

b =1 w0, d0hu =0, Godohu=m  Bi=0,

b=z, @onoe =0, Guodu=3, B=0, =3
b=i—5  (bndde=0  (be=3  B=0,  CG=j
¢3 = a° — Zw, etc.

These are nothing but the monic Chebyshev polynomials Ty.
The following theorem will become useful:

Theorem 4. Let f € Cla,b], f #Z 0 satisfying (f,p)w = 0 for all p € P,_1. Then f changes
signs at least k times on (a,b).

Proof. By contradiction. Suppose that f changes sign only r < k times, at the points t; <
to < --- < tp. Then f will not change sign on each of the subintervals:

(a,t1), (t1,t2), -+, (tro1s tr), (0, b).

Let p(x) = [[;_;(x — t;) € P, C Px_;. Then p(z) has the same sign properties as f(z), and
f(z)p(z) does not change sign on the interval. Since w > 0 we get

b
[ w@)s@nte) £0
a
which contradicts the assumption of the theorem. O

Corollary 5. The orthogonal polynomial ¢y has exactly k distinct zeros in (a,b).



