
Orthogonal polynomials.

The aim of this section is to construct “optimal” quadrature formulas. To be more specific,
given the integral

Iw(f) =
∫ b

a
w(x)f(x)dx (1)

in which w(x) is a fixed, positive function. We want to approximate this using a quadrature
formula on the form

Qw(f) =
n∑

i=0

Aif(xi).

Such a formula can be constructed as follows: Choose n + 1 distinct nodes, x0, x1, · · · , xn in
the interval [a, b]. Construct the interpolation polynomial

pn(x) =
n∑

i=0

f(xi)`i(x), `i(x) =
n∏

j=0
j 6=i

x− xj

xi − xj
.

An approximation to the integral is then given by

Qw(f) =
∫ b

a
w(x)pn−1(x)dx =

m∑
i=0

Aif(xi), Ai =
∫ b

a
w(x)`i(x)dx. (2)

The quadrature formula is of precision m if

Iw(p) = Qw(p), for all p ∈ Pm.

From the construction, these quadrature formulas is of precision at least n. The question is
how too choose the nodes xi, i = 0, . . . , n giving m as large as possible. The key concept here
is orthogonal polynomials.

Orthogonal polynomials.

Given two functions f, g ∈ C[a, b]. We define an inner product of these two functions by

< f, g >=
∫ b

a
w(x)f(x)g(x)dx, w(x) > 0. (3)

Thus the definition of the inner product depends on the integration interval [a, b] and a given
weight function w(x). If f, g, h ∈ C[a, b] and α ∈ R then

〈f, g〉w = 〈g, f〉w
〈f + g, h〉w = 〈f, h〉w + 〈g, h〉w
〈αf, g〉w = α〈f, g〉w
〈f, f〉w ≥ 0, and 〈f, f〉w = 0⇔ f ≡ 0.

From an inner product, we can also define a norm on C[a, b] by

‖f‖2w = 〈f, f〉w.
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For the inner product (3) we also have

〈xf, g〉w =
∫ b

a
w(x)xf(x)g(x)dx = 〈f, xg〉w. (4)

Our aim is now to create an orthogonal basis for P, that is, create a sequence of polynomials
φk(x) of degree k (no more, no less) for k = 0, 1, 2, 3, . . . such that

〈φi, φj〉w = 0 for all i 6= j.

If we can make such a sequence, then

Pn−1 = span{φ0, φ1, · · · , φn−1} and 〈φn, p〉w = 0 for all p ∈ Pn−1.

Let us now find the sequence of orthogonal polynomials. This is done by a Gram-Schmidt
process:

Let φ0 = 1. Let φ1 = x−B1 where B1 is given by the orthogonality condition:

0 = 〈φ1, φ0〉w = 〈x, 1〉w −B1〈1, 1〉w ⇒ B1 =
〈x, 1〉w
‖1‖2w

.

Let us now assume that we have found φj , j = 0, 1, . . . , k − 1. Then, let

φk = xφk−1 −
k−1∑
j=0

αjφj .

Clearly, φk is a polynomial of degree k, and αj can be chosen so that 〈φk, φi〉w = 0, i =
0, 1, . . . , k − 1, or

〈φk, φi〉w = 〈xφk−1, φi〉w−
k−1∑
j=0

αj〈φi, φj〉w = 〈xφk−1, φi〉w−αi〈φi, φi〉w = 0, i = 0, 1, · · · , k−1.

So αi = 〈xφk−1, φi〉w/〈φi, φi〉w. But we can do even better. Since φk−1 is orthogonal to all
polynomials of degree k − 2 or less, we get

〈xφk−1, φi〉w = 〈φk−1, xφi〉w = 0 for i+ 1 < k − 1.

So, we are left only with αk−1 and αk−2. The following theorem concludes the argument:

Theorem 1. The sequence of orthogonal polynomials can be defined as follows:

φ0(x) = 1, φ1(x) = x−B1

φk(x) = (x−Bk)φk−1(x)− Ckφk−2(x), k ≥ 2

with

Bk =
〈xφk−1, φk−1〉w
‖φk−1‖2w

, Ck =
〈xφk−1, φk−2〉w
‖φk−2‖2w

=
‖φk−1‖2w
‖φk−2‖2w
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The last simplification of Ck is given by:

〈xφk−1, φk−2〉w = 〈φk−1, xφk−2〉w
φk−1 = xφk−2 −Bk−1φk−2 − Ck−1φk−3.

Solve the second with respect to xφk−2, replace it into the right hand side of the first expression,
and use the orthogonality conditions.

Example 2. For the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x)dx

we get

φ0 = 1, 〈xφ0, φ0〉 = 0, 〈φ0, φ0〉 = 2, B1 = 0,

φ1 = x, 〈xφ1, φ1〉 = 0, 〈φ1, φ1〉 =
2
3
, B2 = 0, C2 =

1
3

φ2 = x2 − 1
3

〈xφ2, φ2〉 = 0, 〈φ2, φ2〉 =
8
45
, B3 = 0, C3 =

4
15

φ3 = x3 − 3
5
x, etc.

These are the well known Legendre polynomials.

Example 3. Let w(x) = 1/
√

1− x2, and [a, b] = [−1, 1]. We then get the sequence of polyno-
mials:

φ0 = 1, 〈xφ0, φ0〉w = 0, 〈φ0, φ0〉w = π, B1 = 0,

φ1 = x, 〈xφ1, φ1〉w = 0, 〈φ1, φ1〉w =
π

2
, B2 = 0, C2 =

1
2

φ2 = x2 − 1
2

〈xφ2, φ2〉w = 0, 〈φ2, φ2〉w =
π

2
, B3 = 0, C3 =

1
4

φ3 = x3 − 3
4
x, etc.

These are nothing but the monic Chebyshev polynomials T̃k.

The following theorem will become useful:

Theorem 4. Let f ∈ C[a, b], f 6≡ 0 satisfying 〈f, p〉w = 0 for all p ∈ Pk−1. Then f changes
signs at least k times on (a, b).

Proof. By contradiction. Suppose that f changes sign only r < k times, at the points t1 <
t2 < · · · < tr. Then f will not change sign on each of the subintervals:

(a, t1), (t1, t2), · · · , (tr−1, tr), (tr, b).

Let p(x) =
∏r

i=1(x − ti) ∈ Pr ⊆ Pk−1. Then p(x) has the same sign properties as f(x), and
f(x)p(x) does not change sign on the interval. Since w > 0 we get∫ b

a
w(x)f(x)p(x) 6= 0

which contradicts the assumption of the theorem.

Corollary 5. The orthogonal polynomial φk has exactly k distinct zeros in (a, b).
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