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TMA4215 Numerical Mathematics — Fall 2016

PROBLEM SET 1

1 Assume that a function f is differentiable at a point x .

a) Prove that the derivative can be calculated as a symmetric/central limit:

f ′(x) = lim
h→0

f (x + h)− f (x − h)
2h

.

The discrete analogue of the symmetric limit is the central difference formula.

Solution. Write

f (x + h)− f (x − h)
2h

=
1
2

�

f (x + h)− f (x)
h

+
f (x)− f (x − h)

h

�

and let h→ 0. Make sure that you understand why the second expression also equals f ′(x) (hint:

as h→ 0, we must have −h→ 0 as well.)

b) Does the existence of the symmetric limit at x imply that f is differentiable there?

Solution. The absolute value function f (x) = |x | is not differentiable at 0, but the symmetric

limit exists and equals 0. Indeed,

lim
h→0

|h| − |−h|
2h

= 0

in the symmetric case, while the limit in the ordinary derivative approaches −1 if h→ 0− (from

below) and +1 if h→ 0+ (from above), and so does not exist at 0.

2 Assume that f is twice differentiable at x . Show that the second derivative can be calculated as

the following symmetric limit:

f ′′(x) = lim
h→0

f (x + h)− 2 f (x) + f (x − h)
h2

.

Hint: Use l’Hôpital’s rule and Exercise 1.

Solution. Let

A(h) = f (x + h)− 2 f (x) + f (x − h) and B(h) = h2.

Since f ′′(x) exists, both A and B are (continuously) differentiable in an interval around 0. L’Hôpital’s

rule gives that

lim
h→0

A(h)
B(h)

= lim
h→0

A′(h)
B′(h)

= lim
h→0

f ′(x + h)− f ′(x − h)
2h

,

and the latter expression equals f ′′(x) by Exercise 1.
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3 Let h> 0. Then, if

i) f ∈ C1([x , x + h]) and f ′′ exists and is bounded in (x , x + h), we know that

f (x + h)− f (x)
h

− f ′(x) = O (h) as h→ 0+;

ii) f ∈ C1([x − h, x]) and f ′′ exists and is bounded in (x − h, x), we know that

f (x)− f (x − h)
h

− f ′(x) = O (h) as h→ 0+;

iii) f ∈ C2([x − h, x + h]) and f (3) exists and is bounded in (x − h, x + h), we know that

f (x + h)− f (x − h)
2h

− f ′(x) = O (h2) as h→ 0+;

The definition of the O (bigoh) notation is as follows:

f (x) = O (g(x)) as x → ξ

if there are constants M > 0 and δ > 0 such that | f (x)| ≤ M |g(x)| whenever |x − ξ| ≤ δ. The inter-

pretation of this is that the growth of f is bounded above (within a factor M) by that of g when we

are sufficiently close to ξ.

a) The boundedness-assumptions in i)–iii) cannot be dropped if we want to use the O (bigoh)

notation. Why?

Solution. We consider case i); the other two are similar. Since f ∈ C1([x , x + h]) and f ′′ exists

in (x , x + h), we can apply Taylor’s theorem to get that

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(ηh)

for some ηh ∈ (x , x + h). The subscript is a reminder that ηh depends on h. Hence,

f (x + h)− f (x)
h

− f ′(x) =
h
2

f ′′(ηh).

It is tempting to interpret the right-hand side as O (h) as h→ 0+, but this means that

h
2

�

� f ′′(ηh)
�

�≤ M h

for some M > 0 provided that h is sufficiently small. In other words, we implicitly assume that f ′′

is bounded.

An example where the assumptions fail is

f (x) =







x3 sin
� 1

x

�

if x 6= 0;

0 if x = 0,

which is C1 on all of R, but with unbounded second derivative as x → 0.
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b) Verify i)–iii) by numerical experiments. Use the following test examples:

1) f (x) = 1/x in x0 = 1.

2) f (x) = sin x − cos x in x0 = 1 and x0 = π/4.

3) f (x) =







x2 − 2x for x > 1;

−x2 + 2x − 2 for x ≤ 1
in x0 = 1.

In each case, use stepsizes h = 0.1×2−i , where i = 0, 1, . . . , 10. Present the results both as a table

and as a convergence plot. Comment on the results: are they as expected? If not, explain why.

Solution. In Table 1 we have computed the numerical results of example 1); the two other

examples are omitted. As is seen, the order of convergence for the forward ( i)) and backward (ii))

schemes is linear, while the central (iii)) scheme is quadratic. These results can also be seen

in Figure 1, where we in addition have included the results of examples 2) and 3).

Table 1: Order of convergence of finite difference schemes for example 1).

h

Forward scheme i) Backward scheme ii) Central scheme iii)

|e(h)|
�

�

�

�

e(h)
e(h/2)

�

�

�

�

|e(h)|
�

�

�

�

e(h)
e(h/2)

�

�

�

�

|e(h)|
�

�

�

�

e(h)
e(h/2)

�

�

�

�

0.1 9.091× 10−2 1.909 1.111× 10−1 2.111 1.010× 10−2 4.030
0.1× 2−1 4.762× 10−2 1.952 5.263× 10−2 2.053 2.506× 10−3 4.008
0.1× 2−2 2.439× 10−2 1.976 2.564× 10−2 2.026 6.254× 10−4 4.002
0.1× 2−3 1.235× 10−2 1.988 1.266× 10−2 2.013 1.563× 10−4 4.000
0.1× 2−4 6.211× 10−3 1.994 6.289× 10−3 2.006 3.906× 10−5 4.000
0.1× 2−5 3.115× 10−3 1.997 3.135× 10−3 2.003 9.766× 10−6 4.000
0.1× 2−6 1.560× 10−3 1.998 1.565× 10−3 2.002 2.441× 10−6 4.000
0.1× 2−7 7.806× 10−4 1.999 7.819× 10−4 2.001 6.104× 10−7 4.000
0.1× 2−8 3.905× 10−4 2.000 3.908× 10−4 2.000 1.526× 10−7 4.000
0.1× 2−9 1.953× 10−4 2.000 1.954× 10−4 2.000 3.815× 10−8 4.000
0.1× 2−10 9.765× 10−5 9.767× 10−5 9.536× 10−9

In example 2) with x0 = π/4 we see that both the forward and backward schemes are quadratic. Is

this in agreement with theory? Yes, first of all, the O -notation indicates just an upper bound; the ac-

tual convergence speed can be much faster! The quadratic convergence occurs since f ′′(π/4) = 0

and f is smooth, so that in particular f (3) exists and is bounded in an interval around x0.

In example 3) we first note that

f ′(x) =

(

2x − 2 for x > 1;

−2x + 2 for x ≤ 1
and f ′′(x) =

(

2 for x > 1;

−2 for x < 1,

while f ′′(1) does not exist. The assumptions to i) and ii) are fullfilled, giving linear convergence.

For the central scheme, however, the nonexistence of f ′′(1) violates the assumptions, and we

lose the guaranteed quadratic convergence1.
1. . . from this result. But in principle, the fact that assumptions are not satisfied does not imply that the associated

conclusion is false; see example 2).
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(a) Example 1).
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(b) Example 2) with x0 = 1.
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(c) Example 2) with x0 = π/4.
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(d) Example 3).

Figure 1: Order of convergence-plots. In (c) and (d) all the three solid lines lie on top of each other.

4 Let

y = ϕ1(x) =
1

1+ 2x
− 1− x

1+ x
and y = ϕ2(x) =

2x2

(1+ 2x)(1+ x)

be given.

a) Show that the two expressions are the same.

Solution. Introducing a common denominator in ϕ1 gives ϕ2.
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b) Set x = 10−8 and compute y by the two formulas (in MATLAB). Do you get the same result? If

not, which of the results will you trust, and why?

Solution. The exact value of y is

1
5 000000 150000 001

≈ 1.999 999940000 001× 10−16,

and MATLAB yields (in double precision)

ϕ1(x) = 1.110223 024625 16× 10−16

and ϕ2(x) = 1.999999 94× 10−16.

From the relative errors

|δϕ1(x)| ≈ 0.444 888� εmach and |δϕ2(x)| ≈ 7× 10−16 ≈ 3εmach

we infer that ϕ1 is a dangerous formula, while ϕ2 is trustworthy.

Why is this the case? Note that formula ϕ1 is well-conditioned (see the solution to the next

exercise for the definition) since its condition number equals

3x + 2
(x + 1)(1+ 2x)

≈ 2 at x = 10−8.

Computationally, however, the process can be as follows in the computer:

a← 2 · x b← 1− x

a← 1+ a c← 1+ x y ← a− b

a← 1/a b← b/c

In the last operation we subtract two almost equal numbers (a ≈ b), which causes the substantial

error. All the other arithmetic operations are well-conditioned.

5 Find the condition numbers for the following functions:

a) xα with α constant; b) ln x; c) x−1ex .

For which x are the problems ill-conditioned?

Solution. The condition number κ( f , x) of a function f at a point x is a measure for the sensitivity

of the function/problem. If we make an error in the input, is the corresponding output error small

or large? More precisely, κ( f , x) is defined as the infinitesimal rate of relative error in f at x

(output/forward error) divided by the infinitesimal rate of relative error in x (input/backward error).

Thus we consider the ratio
�

�

�

�

�

�

f (x +∆x)− f (x)
�

/ f (x)

∆x/x

�

�

�

�

�

=

�

�

�

�

x
f (x)

· f (x +∆x)− f (x)
(x +∆x)− x

�

�

�

�

,
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which becomes

κ( f , x) =

�

�

�

�

x f ′(x)
f (x)

�

�

�

�

as ∆x → 0. A problem is ill-conditioned at x if κ( f , x)� 1 (much greater than 1), and well-

conditioned otherwise.

Routine calculations now yield

a) κ= |α|, so well-conditioned for all x if |α| is not too big, and ill-cond. for all x when |α| � 1. For

example, if α= 1000 and somehow we managed to measure x = 1.01 instead of x = 1, then the

output is suddenly ≈ 21 000� 1.

b) κ= | ln x |−1, so ill-conditioned whenever x ≈ 1.

c) κ= |x − 1|, so ill-conditioned when |x | � 1.

6 Define

xn =

∫ 1

0

tn(t + 5)−1 dt.

It is given that x20 = 7.9975230282321638314521017213803814812635139208 . . .× 10−3.

a) Show that x0 = ln1.2, and that xn = n−1 − 5xn−1 for n ≥ 1. Compute xn for n = 1,2, . . . , 20

using this reccurence formula. Is x20 correct?

b) Now use the reccurence formula backwards to find xn for n= 19,18, . . . , 0. Is x0 correct?

In both cases, explain the behaviour of the reccurence.

Solution. a) Integration by parts gives x0 = ln(t + 5)
�

�

1
0 = ln 1.2, and as regards the reccurence for-

mula, notice that

xn + 5xn−1 =

∫ 1

0

�

tn + 5tn−1
�

(t + 5)−1 dt =

∫ 1

0

tn dt =
1
n

.

Computing with yields the incorrect value x20 = 4.242637 044921 560× 10−3 (double precision).

The reason for this is that the factor 5 amplifies the round-off error at each step.

b) The backwards reccurence formula is xn =
1
5(n

−1 − xn), and we find that the computed x0 is

exactly ln 1.2 in double precision. The problem has now disappeared due to a damping effect

from the 1
5 term.


