
NTNU
TMA4215 Numerical Mathematics — Fall 2016

PROBLEM SET 4

1 The Butcher tableau for the Bogacki–Shampine pair is

0

1/2 1/2

3/4 0 3/4

1 2/9 1/3 4/9

2/9 1/3 4/9 0

7/24 1/4 1/3 1/8

Find the stability functions of the two methods, and plot the stability regions with MATLAB, writing

something similar as:

1 % Plot the stabilty domain for a given stability function.

2 % Domain: [−a, a, −b, b]

3 a = 4; b = 4;

4 [x, y] = meshgrid(linspace(−a, a), linspace(−b, b));

5 z = x + i*y;

6

7 % Stability function.

8 R = abs(1 + z + z.^2/2);

9

10 % Make the plot.

11 contourf(x, y, R, [1 1], 'k')

12 axis equal, axis([−a a −b b]), grid on

13 hold on

14 plot([−a, a], [0, 0], 'k', 'LineWidth', 1);

15 plot([0, 0], [−a, a], 'k', 'LineWidth', 1);

Solution. The stability function R(z) of a method is defined from yn+1 = R(z) yn, where z = hλ, when

we apply the method to the linear test equation y ′ = λy , with λ ∈ C. For the first method in the pair

we have

k1 = λyn, k2 = λ
�

yn +
1
2hk1

�

, k3 = λ
�

yn +
3
4hk2

�

and yn+1 = yn + h
�2

9 k1 +
1
3 k2 +

4
9 k3

�

,

which gives the stability function

R1(z) = 1+ z + 1
2z2 + 1

6z3.
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We could have deduced this immediately since the 3-stage explicit RK-method is of 3rd order. Similarly,

the second method yields

R2(z) = 1+ z + 1
2z2 + 3

16z3 + 1
48z4,

and in Figure 1 we have plotted their absolute stability regions, that is, all z ∈ C for which their

modulus is less than or equal to 1.
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(b) |R2(z)| ≤ 1.

Figure 1: Absolute stability regions (colored).

2 a) Find the eigenvalues of the matrix

M =

�

−10 −10

40 −10

�

.

Solution. The eigenvalues are λ1,2 = −10± 20i.

b) Assume that you are to solve the differential equation

y ′ = M y, y(0) = y0

using the improved Euler method. What is the largest stepsize hmax you can use?

Solution. The stability function is given by

R(z) = 1+ z + 1
2z2.

We must have
|R(hλ)| ≤ 1

for the numerical solution to be stable for all eigenvalues of M . In our case, this means that

�

�R
�

(−10± 20i)h
��

�

2
= R

�

(−10± 20i)h
� · R�(−10∓ 20i)h

�

= 1− 20h+ 200h2 − 5000h3 + 62500h4 ≤ 1,

which is satisfied when 0≤ h≤ hmax ¯ 0.086036.
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c) Solve the equation

y ′ = M y + g, 0≤ t ≤ 10

with

g(t) =
�

sin t, cos t
�>

and y(0) =
�

5210
249401

,
20259

249401

�>

with help of the erk.m-function from Problem Set 2. Choose stepsizes a little smaller than and a

little larger than hmax. What do you observe?

Solution. In Figure 2 we have plotted the exact solution and three attempts using the improved

Euler method with stepsizes close to hmax. All cases show instability, and Figure 2d is a complete

breakdown.
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(a) Exact solution (ODE45).
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(b) h= 0.0855 (N = 117).
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(c) h= 0.0862 (N = 116).
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(d) h= 0.087 (N = 115).

Figure 2: Exact solution, and disastrous numerical solutions using the improved Euler method with various
stepsizes a little below and above the critical stepsize hmax.
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d) Solve the equation in c) by the backward Euler method. Use different stepsizes, e.g. 0.1 and 0.5.

Do you observe any stepsize restrictions due to stability in this case?

Solution. A simple implementation of the backward Euler method can be found on the webpage.

We do not observe any stepsize restrictions, which is in agreement with the backward Euler

method being A-stable.

3 A method is A-stable if |R(z)| ≤ 1 for all z ∈ C−. The stability function R is always a rational

function, that is, R(z) = P(z)/Q(z) where P and Q are polynomials in z. By using the maximum

modulus principle it is possible to show that a method is A-stable if and only if

? R(z) does not have poles in C− (poles are zeros of Q(z)),

? |R(y i)|2 ≤ 1 for all y ∈ R.

a) Use this to show that the 3rd-order implicit Runge–Kutta method

1/3 5/12 −1/12

1 3/4 1/4

3/4 1/4

is A-stable. Plot the stability region.

Solution. The RK-scheme applied to y ′ = λy is

k1 = λ
�

yn +
1
12h (5k1 − k2)

�

, k2 = λ
�

yn +
1
4h (3k1 + k2)

�

and yn+1 = yn +
1
4h (3k1 + k2) .

This gives yn+1 = k2/λ and

3k1 + k2 = 4λyn + 2zk1,

where z = λh, so that

k1 =
λyn

�

1− 1
3z
�

1− 2
3z + 1

6z2
.

Putting things together we find that the sta-

bility function is

R(z) =
k2

λyn
=

1+ 1
3z

1− 2
3z + 1

6z2
,

and the absolute stability region is shown

in Figure 3.

2 4 6

−4

−2

2

4

2 4 6

−4

−2

2

4

Re z

Im z

Figure 3: Stability region (colored).

A routine calculation yields that R has poles at 2±p2i. Hence, condition 1 is satisfied. Additionally,

|R(yi)|2 = R(yi)R(−y i) =
4y2 + 36

y4 + 4y2 + 36
≤ 1

for all y ∈ R, so yes, the method is A-stable (this we also see from Figure 3).
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b) Find the system of nonlinear equations that must be solved when taking a step with this method

applied to the van der Pol equation

y ′′ −µ(1− y2)y ′ + y = 0,

where µ > 0 is a known constant.

Help: Write the equation as a first-order system.

(Later, we will discuss how to solve such systems of nonlinear equations.)

Solution. We write van der Pol’s equation as
(

y ′ = v,

v′ = µ(1− y2)v − y,
or, in vector notation,

�

y

v

�′
= f

�

t,

�

y

v

��

=

�

v

µ(1− y2)v − y

�

.

Let ky,1 and kv,1 denote the components of the k1 vector, and similarly for k2. Then for each step

the following system of equations must be solved:

ky,1 = V1, kv,1 = µ
�

1− Y 2
1

�

V1 − Y1,

ky,2 = V2, kv,2 = µ
�

1− Y 2
2

�

V2 − Y2,

with

Y1 = yn +
1
12h

�

5ky,1 − ky,2

�

, Y2 = yn +
1
4h
�

3ky,1 + ky,2

�

,

V1 = vn +
1
12h

�

5kv,1 − kv,2

�

, V2 = vn +
1
4h
�

3kv,1 + kv,2

�

.

The solution is updated by

yn+1 = Y2, vn+1 = V2.

4 Which of the following linear multistep methods is/are convergent? State the order p and the

error constant Cp+1 for each method.

Solution. By Dahlquist’s equivalence theorem, an LMM

k
∑

l=0

αl ym+l =
k
∑

l=0

βl f (xm+l , ym+l)

is convergent if and only if it is consistent and zero-stable. Let

C0 =
k
∑

l=0

αl and Cq =
1
q!

k
∑

l=0

�

lqαl − qlq−1βl

�

for q = 1, 2, . . . .

Then the method is consistent if C0 = C1 = 0 and of order p if

C0 = C1 = · · ·= Cp = 0 but Cp+1 6= 0.

In addition, an LMM is zero-stable if and only if all the roots of the characteristic polynomial

ρ(r) =
∑k

l=0αl r l lie in the closed unit disk D= {r ∈ C : |r| ≤ 1} and only simple roots are on the

boundary ∂D= {r ∈ C : |r|= 1}.
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a) ym+2 + ym+1 − 2ym =
h
4

�

f (xm+2, ym+2) + 8 f (xm+1, ym+1) + 3 f (xm, ym)
�

.

Solution. Routine calculations yield that C0 = C1 = C2 = C3 = 0 and C4 = 1/24. Hence, the

method is consistent and of order 3. The roots of ρ(r) = r2 + r − 2 are r1 = 1 and r2 = −2, so

the LMM is not zero-stable, and therefore not convergent.

b) ym+3 +
1
4 ym+2 − 1

2 ym+1 − 3
4 ym =

h
8

�

19 f (xm+2, ym+2) + 5 f (xm, ym)
�

.

Solution. The method is of order 3, with C4 = 17/48. Moreover, ρ(r) = r3 + 1
4 r2 − 1

2 r − 3
4 has

roots r1 = 1 and r2,3 =
�−5± i

p
23
�

/8. Hence, it is zero-stable and thus also convergent.

c) ym+2 − ym+1 =
h
3

�

3 f (xm+1, ym+1)− 2 f (xm, ym)
�

.

Solution. Since C1 = 2/3, the LMM is of order 0. Hence, consistency fails and it cannot be

convergent. It is, however, zero-stable.


