TMA4215 Numerical Mathematics — Fall 2016

NTNU
PROBLEM SET 5

Let {t;}' , be a set of equidistant nodes, so that t; =t, +ih for i =1,2,...,n, where h is
the distance between the nodes. Given a function f defined on an interval containing the nodes,

with f; := f(¢t;) fori =0,1,...,n, we can introduce forward differences recursively by
A% =f;, Afi=fia—fi  and  Afi=A(ATf) = AT i AT,

fori=0,...,nand j=0,1,...,n—1i. For example,

A fo=fr—2f1+ fo and Afo=f3—3f,+3f1—fo.

Now let t = ty + sh, where s € R, be any point. In this exercise we want to establish that the

polynomial p, of degree n interpolating f in the nodes {t;} can be written as
n s .
P = pulto ) = fo+ 35 () Alfo )
j=1

where

(s) _s(s—=1)---(s—j+1)
i) J!
is a generalized binomial coefficient. Equation (1) is called Newton’s forward difference formula.

a) Show by induction that

Alf .
f[tO)tlz"‘atj]:j!hj for J:]-:"‘:n) (*)

where f[tg, t1,...,t;]is a forward divided difference defined from

fltjl1=f; for je€{0,...,n}
and

fltivn oo tiggl = flt o figjal

tivj— U

f[ti:--‘:ti-i—j] =

forje{l,...,n}andi€{0,...,n—j}.
Solution. For j =1 we have f[tq, t;]1=(f; — fo)/h = Afy/h. Suppose now that () holds for

some j € {1,...,n—1}. In particular,

Alfy

f[t1,~-,fj+1]=ﬁ
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by an index shift. Hence,

f[tl,...,th]—f[tO,...,tj]_Aifl_Aij_ AT A
(j+1h EE G E T

f[tO""’tj+1] =

b) Show that -1
l_[(t—ti)=j!hj(s_) for j=1,...,n.
i=0 J

Solution. Since t —t; = (to +sh) —(ty + ih) = (s —i)h, we immediately get
j—1 s
l_[(t—ti)=hjs(s—1)~-(s—j+1)=j!hj(_).
i=0 J

¢) Use the results from a) and b) to prove (1).

Solution. Recall that the unique polynomial p,, € P, interpolating f in the nodes {t;} can be

given by Newton’s divided difference formula

n j—1
pa(t)=Flto]+ Y flto,....t;1] Jee—to).
j=1 i=0

Inserting the expressions from a) and b) now gives (1).

Comment: Equivalently, it is possible to show Newton’s backward difference formula. Backward

differences on the sequence {f;} are defined by

V=1, Vfi=fi— fi-1, Vifi=VI =T, i=12,...

Newton’s backward difference formula is given by
n [—s .
Pa0) = palty +5h) = £, + S (=1Y (]. )vs. @
j=1

This expression is used to develop Adams methods; see the note on the webpage. In the next exercise,

it is used to develop the so-called BDF-methods.

The backward differentiation formulas (BDFs) is a family of implicit linear k-step methods to the
initial value problem

y'=fty),  ytod=yo
where we assume that the starting values y;,..., y—; (in addition to y,) are given with sufficient
accuracy. To construct them, we first use (2) to find the polynomial q € P, interpolating all the

previously computed points plus the new one, that is, the points

(tn—k+1>yn—k+1): AR (tmyn), (tn+1:yn+1)'

Then we replace y by q in the ODE and evaluate the corresponding equation at t,,;, which yields
the BDF
q'(tp41) = f(tns1> Ynar)-
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a) Establish that a k-step BDF can be written as

k
Z 6;v]yn+1 = hfn+1’
j=1

and find an expression for 51*..
Solution. From (2) we infer that
k o\
q(t) = q(tn+1 +Sh) =Yn+1 + Z(_l)] ( ] )v].yn+1r
j=1

and so an application of the chain rule, using that

t—t
t(s) =t +sh  and  s(t) = T”“

results in

k

2 (G0

j=

ds

dg(t()|  ds
s=0 dt

q/(tn+1) = ds

)vj 1
s=0 Yn+1 h

Thus we obtain the desired form with
. d (—s
5§ =(-1)Y —
= ]. )

b) Write down the methods for k = 1,2 and 3 and check if they are zero-stable. Moreover, find their

1
s=0_j.

orders and the corresponding error constants.

Solution. Routine calculations yield that
BDF1: Yna1—Yn =hfni1 (backward Euler);
BDF2:  3¥ni1—2Yn+ 3Yn1 = hfpits
BDF3: G ¥ni1—3¥n+ 3¥n1~ 3¥n2 = hfu1.
For example, the left-hand side in BDF2 is
51V i1+ 85V Yni2 = ne1 = Y) + 3 (Vne1 = Yn— = Yn1))
before simplifying.
All three methods are zero-stable, because the roots of the characteristic polynomials are
BDF1l: r;=1;
BDF2: r;=1 and ry,= %;

BDF3: ri=1 and ry3=5(7%iv/39).
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c)

For example, the characteristic polynomial of BDF3 is p(r) = %rB —3r2+ %r - % (Note that
we have to reindex first so that the subscripts start at n and not n—2.) As regards the order

conditions for a k-step BDE, we compute the C,’s, which with the given indexing become

1 1
1 1
Co= E Q and Co=— E la; — ' for ¢=1,2,...,
I=—k+1 T 12T (g—1)

where we have used that only f3;(= 1) is nonzero. This gives

BDFl: Cy,=C;=0 and error constant Cy = —%, so order 1;

BDF2: Cy=C;=Cy=0 and error constant C; = —%, so order 2;

BDF3: Cy=C;=Cy=C3=0 and error constant C,= —}‘, so order 3.

Based on b), guess what the error constant would be for a general k-step BDE and try to prove it.

Solution. We guess that the error constant is C;; = —1/(k + 1) in general. To prove this, we

need to show two things, namely, that C; = --- = C; = 0 and that C;,; has the given value.

There are likely several ways to establish the result. One possible route may be to express the

BDF in the typical form
1

Z A Yn+l = hfn+1:

[=—k+1
find the a;’s and verify the order conditions in b) algebraically, perhaps together with some

induction argument. Explicitly, we can show that

k kK o : 1
1_. 1 1
Z “Vyn = Z " Z(—l)l ( ) Yne1—i = Z QA1 Yntls
=1/ 17 =0 J

j=17i I=—k+1
with
1 SRV
o= - and a; =(—1)! —( ) for l=—k+1,...,0,
' ;i = i;—zi 1-1

but the expressions look a bit unpleasant.

Instead, we take advantage of that the BDFs are established by means of interpolation polynomials

and directly calculate the local truncation error d,;(h). First we rewrite the BDF into the form
Y1 + (M Q' (t0s1) = Yos1) = hfns,
which yields that
A1 (1) = ¥ (t01) = [ (1, ¥ (€001)) = R0 (a1 Y Ergesn o0 ¥ (trs1)) + Y (i) |

= —h[ ¥ (t0e1) = @' (tr3 ¥ (taoiesn)s - Y (ti)) |
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where q(t,;1;---) denotes the polynomial which interpolates the points

(tn—k+1:y(tn—k+1)): teey (tnr y(tn)): (tn+17 y(tn+1))-

Remember now that the formula for the interpolation error is

(k+1)(
A 0)
t)—q(t; )= ———=m(t),
YO=qlts ) =m0
where &(t) € (t,—it1> tner) and mp(t) = l_[i.;o(t — t,—i+1+i)- Notice from the chain and product
rules that
d

—{y“*”(é(t))nk(t)}ﬂ =y EI(E () € () atnen) +  ED(E(ts0) 7 ()

dt t=thy
= y®D(E(t 1)) kI RE,

because m;(t,;) =0 and

k—1 k—1
T (tran) = [ [(tnsr = tacired) = [ J(k—D)R=kiRk,

=0 i=0
Hence,
¥ ) = s = gy O (E )
and so
dria(h) = ==y * (&) .

To complete, we Taylor-expand y**1) around ¢, (status quo) to get

1
dpya(h) = —my(kﬂ)(tn) W 4+ o(h*),
and conclude that C; =--- = C; =0 and C;,; = —1/(k + 1), as desired.

(Detail: We skipped issues of differentiability and remark that it is not obvious that £(t) is
differentiable.)

NB! BDF-methods with k > 6 are not zero-stable, and thus not convergent.



