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TMA4215 Numerical Mathematics — Fall 2016

PROBLEM SET 5

1 Let {t i}ni=0 be a set of equidistant nodes, so that t i = t0 + ih for i = 1,2, . . . , n, where h is

the distance between the nodes. Given a function f defined on an interval containing the nodes,

with fi := f (t i) for i = 0, 1, . . . , n, we can introduce forward differences recursively by

∆0 fi = fi , ∆ fi = fi+1 − fi and ∆ j fi =∆
�

∆ j−1 fi

�

=∆ j−1 fi+1 −∆ j−1 fi

for i = 0, . . . , n and j = 0,1, . . . , n− i. For example,

∆2 f0 = f2 − 2 f1 + f0 and ∆3 f0 = f3 − 3 f2 + 3 f1 − f0.

Now let t = t0 + sh, where s ∈ R, be any point. In this exercise we want to establish that the

polynomial pn of degree n interpolating f in the nodes {t i} can be written as

pn(t) = pn(t0 + sh) = f0 +
n
∑

j=1

�

s
j

�

∆ j f0, (1)

where
�

s
j

�

:=
s(s− 1) · · · (s− j + 1)

j!

is a generalized binomial coefficient. Equation (1) is called Newton’s forward difference formula.

a) Show by induction that

f [t0, t1, . . . , t j] =
∆ j f0
j! h j

for j = 1, . . . , n, (?)

where f [t0, t1, . . . , t j] is a forward divided difference defined from

f [t j] = f j for j ∈ {0, . . . , n}

and

f [t i , . . . , t i+ j] =
f [t i+1, . . . , t i+ j]− f [t i , . . . , fi+ j−1]

t i+ j − t i

for j ∈ {1, . . . , n} and i ∈ {0, . . . , n− j}.

Solution. For j = 1 we have f [t0, t1] = ( f1 − f0)/h=∆ f0/h. Suppose now that (?) holds for

some j ∈ {1, . . . , n− 1}. In particular,

f [t1, . . . , t j+1] =
∆ j f1
j! h j
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by an index shift. Hence,

f [t0, . . . , t j+1] =
f [t1, . . . , t j+1]− f [t0, . . . , t j]

( j + 1)h
=
∆ j f1 −∆ j f0
( j + 1)! h j+1

=
∆ j+1 f0

( j + 1)! h j+1
.

b) Show that j−1
∏

i=0

(t − t i) = j! h j
�

s
j

�

for j = 1, . . . , n.

Solution. Since t − t i = (t0 + sh)− (t0 + ih) = (s− i)h, we immediately get

j−1
∏

i=0

(t − t i) = h j s (s− 1) · · · (s− j + 1) = j! h j
�

s
j

�

.

c) Use the results from a) and b) to prove (1).

Solution. Recall that the unique polynomial pn ∈ Pn interpolating f in the nodes {t i} can be

given by Newton’s divided difference formula

pn(t) = f [t0] +
n
∑

j=1

f [t0, . . . , t j]
j−1
∏

i=0

(t − t i).

Inserting the expressions from a) and b) now gives (1).

Comment: Equivalently, it is possible to show Newton’s backward difference formula. Backward

differences on the sequence { fi} are defined by

∇0 fi = fi , ∇ fi = fi − fi−1, ∇ j fi =∇ j−1 fi −∇ j−1 fi−1, j = 1, 2, . . .

Newton’s backward difference formula is given by

pn(t) = pn(tn + sh) = fn +
n
∑

j=1

(−1) j
�

−s
j

�

∇ j fn. (2)

This expression is used to develop Adams methods; see the note on the webpage. In the next exercise,

it is used to develop the so-called BDF-methods.

2 The backward differentiation formulas (BDFs) is a family of implicit linear k-step methods to the

initial value problem

y ′ = f (t, y), y(t0) = y0,

where we assume that the starting values y1, . . . , yk−1 (in addition to y0) are given with sufficient

accuracy. To construct them, we first use (2) to find the polynomial q ∈ Pk interpolating all the

previously computed points plus the new one, that is, the points

(tn−k+1, yn−k+1), . . . , (tn, yn), (tn+1, yn+1).

Then we replace y by q in the ODE and evaluate the corresponding equation at tn+1, which yields

the BDF
q′(tn+1) = f (tn+1, yn+1).
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a) Establish that a k-step BDF can be written as

k
∑

j=1

δ?j∇
j yn+1 = hfn+1,

and find an expression for δ?j .

Solution. From (2) we infer that

q(t) = q(tn+1 + sh) = yn+1 +
k
∑

j=1

(−1) j
�

−s
j

�

∇ j yn+1,

and so an application of the chain rule, using that

t(s) = tn+1 + sh and s(t) =
t − tn+1

h
,

results in

q′(tn+1) =
dq(t(s))

ds

�

�

�

s=0

ds
dt

�

�

�

t=tn+1

=
k
∑

j=1

(−1) j
�

d
ds

�

−s
j

�
�

�

�

s=0

�

∇ j yn+1 ·
1
h

.

Thus we obtain the desired form with

δ?j = (−1) j
d
ds

�

−s
j

�
�

�

�

s=0
=

1
j
.

b) Write down the methods for k = 1, 2 and 3 and check if they are zero-stable. Moreover, find their

orders and the corresponding error constants.

Solution. Routine calculations yield that

BDF1: yn+1 − yn = hfn+1 (backward Euler);

BDF2: 3
2 yn+1 − 2yn +

1
2 yn−1 = hfn+1;

BDF3: 11
6 yn+1 − 3yn +

3
2 yn−1 −

1
3 yn−2 = hfn+1.

For example, the left-hand side in BDF2 is

δ?1∇yn+1 +δ
?
2∇

2 yn+2 = (yn+1 − yn) +
1
2

�

yn+1 − yn − (yn − yn−1)
�

before simplifying.

All three methods are zero-stable, because the roots of the characteristic polynomials are

BDF1: r1 = 1;

BDF2: r1 = 1 and r2 =
1
3 ;

BDF3: r1 = 1 and r2,3 =
1
22

�

7± i
p

39
�

.
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For example, the characteristic polynomial of BDF3 is ρ(r) = 11
6 r3 − 3r2 + 3

2 r − 1
3 . (Note that

we have to reindex first so that the subscripts start at n and not n− 2.) As regards the order

conditions for a k-step BDF, we compute the Cq ’s, which with the given indexing become

C0 =
1
∑

l=−k+1

αl and Cq =
1
q!

1
∑

l=−k+1

lqαl −
1

(q− 1)!
for q = 1, 2, . . . ,

where we have used that only β1(= 1) is nonzero. This gives

BDF1: C0 = C1 = 0 and error constant C2 = −
1
2 , so order 1;

BDF2: C0 = C1 = C2 = 0 and error constant C3 = −
1
3 , so order 2;

BDF3: C0 = C1 = C2 = C3 = 0 and error constant C4 = −
1
4 , so order 3.

c) Based on b), guess what the error constant would be for a general k-step BDF, and try to prove it.

Solution. We guess that the error constant is Ck+1 = −1/(k+ 1) in general. To prove this, we

need to show two things, namely, that C0 = · · ·= Ck = 0 and that Ck+1 has the given value.

There are likely several ways to establish the result. One possible route may be to express the

BDF in the typical form
1
∑

l=−k+1

αl yn+l = hfn+1,

find the αl ’s and verify the order conditions in b) algebraically, perhaps together with some

induction argument. Explicitly, we can show that

k
∑

j=1

1
j
∇ j yn+1 =

k
∑

j=1

1
j

j
∑

i=0

(−1)i
�

i
j

�

yn+1−i =
1
∑

l=−k+1

αl yn+l ,

with

α1 =
k
∑

i=1

1
i

and αl = (−1)1−l
k
∑

i=1−l

1
i

�

i
1− l

�

for l = −k+ 1, . . . , 0,

but the expressions look a bit unpleasant.

Instead, we take advantage of that the BDFs are established by means of interpolation polynomials

and directly calculate the local truncation error dn+1(h). First we rewrite the BDF into the form

yn+1 +
�

h q′(tn+1)− yn+1

�

= hfn+1,

which yields that

dn+1(h) = y(tn+1)−
�

hf
�

tn+1, y(tn+1)
�

− hq′
�

tn+1; y(tn−k+1), . . . , y(tn+1)
�

+ y(tn+1)
�

= −h
�

y ′(tn+1)− q′
�

tn+1; y(tn−k+1), . . . , y(tn+1)
�

�

,
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where q(tn+1; · · · ) denotes the polynomial which interpolates the points

�

tn−k+1, y(tn−k+1)
�

, . . . ,
�

tn, y(tn)
�

,
�

tn+1, y(tn+1)
�

.

Remember now that the formula for the interpolation error is

y(t)− q(t; · · · ) =
y(k+1)

�

ξ(t)
�

(k+ 1)!
πk(t),

where ξ(t) ∈ (tn−k+1, tn+1) and πk(t) =
∏k

i=0(t − tn−k+1+i). Notice from the chain and product

rules that

d
dt

¦

y(k+1)
�

ξ(t)
�

πk(t)
©

�

�

�

t=tn+1

= y(k+2)
�

ξ(tn+1)
�

ξ′(tn+1)πk(tn+1) + y(k+1)
�

ξ(tn+1)
�

π′k(tn+1)

= y(k+1)
�

ξ(tn+1)
�

k! hk,

because πk(tn+1) = 0 and

π′k(tn+1) =
k−1
∏

i=0

(tn+1 − tn−k+1+i) =
k−1
∏

i=0

(k− i)h= k! hk.

Hence,

y ′(tn+1)− q′(tn+1; · · · ) =
1

k+ 1
y(k+1)

�

ξ(tn+1)
�

hk,

and so

dn+1(h) = −
1

k+ 1
y(k+1)

�

ξ(tn+1)
�

hk+1.

To complete, we Taylor-expand y(k+1) around tn (status quo) to get

dn+1(h) = −
1

k+ 1
y(k+1)(tn)h

k+1 +O (hk+2),

and conclude that C0 = · · ·= Ck = 0 and Ck+1 = −1/(k+ 1), as desired.

(Detail: We skipped issues of differentiability and remark that it is not obvious that ξ(t) is

differentiable.)

NB! BDF-methods with k > 6 are not zero-stable, and thus not convergent.


