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TMA4215 Numerical Mathematics — Fall 2016

PROBLEM SET 6

1 Find an approximation to the integral

∫ 1.5

1

x2 ln x dx

by Romberg integration (see the note on the webpage). Do the first 3 rows by hand, starting

with h = 0.5. Then rewrite the MATLAB code extrapolation.m for doing Romberg integration,

and apply the code on the integral above. How many rows in the extrapolation table are needed

before no better accuracy can be obtained?

Solution. We first note that the exact solution is Q = 1
8

�

9 ln(1.5)− 19
9

�

≈ 0.192 259357 732796. The

Romberg integration scheme for an integral
∫ b

a f (x)dx is given as











T j,1 = F
�

h/2 j−1
�

for j = 1, 2, . . . ;

T j,k+1 =
4kT j,k − T j−1,k

4k − 1
for k = 1, 2, . . . , j − 1,

where

F(h) = h

�

1
2 f (x0) +

N−1
∑

i=1

f (x i) +
1
2 f (xN )

�

is the trapezoidal rule with stepsize h= (b− a)/N and x i = a+ ih for i = 0,1, . . . , N . Routine calcu-

lations, with h= 0.5, now yield the values in Table 1.

Table 1: First 3 rows in the Romberg extrapolation table of the T j,k ’s.

j T j,1 T j,2 T j,3

1 0.228074 123310 842
2 0.201202 511387 534 0.192 245307 413098
3 0.194494 473181 091 0.192 258460 445610 0.192259 337314 444

For example, defining f (x) = x2 ln x , we have

T1,1 =
1
4

�

f (1) + f (1.5)
�

, T2,1 =
1
2 T1,1 +

1
4 f (1.25) and T2,2 =

1
3

�

4T2,1 − T1,1

�

.

A naïve modification of the extrapolation.m code is to define F as follows.

% Trapezoidal rule, assuming h = (b − a) / N;

F = @(h) h * (f(a)/2 + (h < b−a) * sum(f(a + (1:(b−a)/h − 1) * h)) + f(b)/2);

N = 1; % Initial no. of eval. pts minus one in the trap. rule.

h = (b − a) / N; % Initial stepsize.
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This procedure, however, uses many unnecessary function evaluations. The reader is invited to

implement an improved version reducing the computational cost, where we note that T j,1 can be

partly expressed by T j−2,1 (the exception is T2,1, as seen above).

In double precision, 6 rows are needed to achieve optimal accuracy. Table 2 displays the errors

for convenience.

Table 2: Errors Q− T j,k.

j T j,1 T j,2 T j,3 T j,4 T j,5 T j,6

1 −3.581× 10−2

2 −8.943× 10−3 1.405× 10−5

3 −2.235× 10−3 8.973× 10−7 2.042× 10−8

4 −5.587× 10−4 5.640× 10−8 3.448× 10−10 2.621× 10−11

5 −1.397× 10−4 3.530× 10−9 5.507× 10−12 1.204× 10−13 1.807× 10−14

6 −3.492× 10−5 2.207× 10−10 8.657× 10−14 5.274× 10−16 5.551× 10−17 2.776× 10−17

2 a) Let F(h) be our numerical approximation to some solution Q, and assume we have an error

expansion given by

F(h) =Q+ C1h+ C2h2 + C3h3 + · · · ,

where the constants Ck are independent of h. Explain how you can make an extrapolation table

based on the stepsize sequence {h/ j}, j = 1,2, . . . .

Write a MATLAB code to test your algorithm on the forward difference approximation to the

derivative of f (x) in some point x0. In this case

F(h) =
f (x0 + h)− f (x0)

h
and Q = f ′(x0).

Solution. Somewhat embarrassing, this was in fact more complicated to solve than first expected.

By brute force, let T j,1 = F (h/ j) for j = 1,2, . . ., so that

T j−1,1 =Q+ C1
h

j − 1
+
∞
∑

p=2

1
( j − 1)p

Cphp;

T j,1 =Q+ C1
h
j
+
∞
∑

p=2

1
jp

Cphp.

We can eliminate the 1st-order term h by multiplying the second equation by j and the first by j

and then subtract to get a 2nd-order approximation

T j,2 = jT j,1 − ( j − 1)T j−1,1 =Q+
∞
∑

p=2

K(p)j,2 Cphp,

where

K(p)j,2 =
1

jp−1
−

1
( j − 1)p−1

.
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Now, in a general extrapolation step we have

T j−1,k =Q+ K(k)j−1,kCphk +
∞
∑

p=k+1

K(p)j−1,kCphp;

T j,k =Q+ K(k)j,k Cphk +
∞
∑

p=k+1

K(p)j,k Cphp.

In order to get a (k+ 1)th-order approximation, we do similarly as above, but also normalize the

expressions so that the coefficient in front of Q is 1. This yields the extrapolation formula

T j,k+1 =

1
K(k)j,k

T j,k −
1

K(k)j−1,k

T j−1,k

1
K(k)j,k

− 1
K(k)j−1,k

=Q+
∞
∑

p=k+1

K(p)j,k+1Cphp,

which also can be written as

T j,k+1 = T j,k +
T j,k − T j−1,k

K(k)j−1,k

K(k)j,k

− 1

=Q+
∞
∑

p=k+1

K(p)j,k+1Cphp,

with

K(p)j,k+1 = K(p)j,k +
K(p)j,k − K(p)j−1,k

K(k)j−1,k

K(k)j,k

− 1

.

The only thing we need to know in the formula is the fraction K(k)j−1,k/K
(k)
j,k , which for the first few

values of k equals

K(1)j−1,1

K(1)j,1

=
j

j − 1
,

K(2)j−1,2

K(2)j,2

=
j

j − 2
,

K(3)j−1,3

K(3)j,3

=
j

j − 3
and

K(4)j−1,4

K(4)j,4

=
j

j − 4
.

This indicates that
K(k)j−1,k

K(k)j,k

=
j

j − k
, (?)

and we end up with the extrapolation formula














T j,1 = F (h/ j) for j = 1, 2, . . . ;

T j,k+1 = T j,k +
T j,k − T j−1,k

j
j−k − 1

for k = 1, 2, . . . , j − 1.

A reward (a bag of Twist chocolate) is given to the first one of you who can give a direct proof

of (?). We know from the literature that the statement is true, because there are alternative

procedures to derive the extrapolation formula.

A MATLAB implementation of this algorithm applied to the test problem can be found on the web-

site. Note that we do not achieve errors close to machine precision. This occurs because j
j−k ≈ 1

for sufficiently large j and small k, which leads to numerical instability from round-off error.
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b) It can be proved that, using the forward Euler method

yn+1 = yn + hf (tn, yn) with n= 0, . . . , N − 1

to solve the IVP y ′ = f (t, y) and y(t0) = y0 from t0 to t0 +H, the global error can be expressed

as

yN = y(t0 +H) + C1h+ C2h2 + C3h3 + · · · , where h=
H
N

.

See if you can figure out how the extrapolation algorithm developed in a) applied to this problem

can be expressed as explicit Runge–Kutta methods of arbitrary high order (with a lot of stages).

The stepsize used in these RK-methods is H.

Hint: Do one extrapolation step at a time starting out with the explicit Euler method and find the

ERK formulation of the 2nd-order approximation, then of the 3rd-order, etc. Identify the function

evaluations, since

ki = f
�

t0 + ciH, y0 +H
i−1
∑

j=1

ai jk j

�

.

Solution. Let us demonstrate the idea for some small values of N . Every time an evaluation of f

appears, that is, a stage derivative, we label it kN ,i with index i in a natural manner. This yields

N = 1 : y(1)1 = y0 +H f (t0, y0) = y0 +Hk1,1,

N = 2 :







y(2)1 = y0 +
1
2 H f (t0, y0) = y0 +

1
2 Hk2,1,

y(2)2 = y(2)1 + 1
2 H f

�

t0 +
1
2 H, y(2)1

�

= y0 +
1
2 H

�

k2,1 + k2,2

�

,

N = 3 :























y(3)1 = y0 +
1
3 H f (t0, y0) = y0 +

1
3 Hk3,1,

y(3)2 = y(3)1 + 1
3 H f

�

t0 +
1
3 H, y(3)1

�

= y0 +
1
3 H

�

k3,1 + k3,2

�

,

y(3)3 = y(3)2 + 1
3 H f

�

t0 +
2
3 H, y(3)2

�

= y0 +
1
3 H

�

k3,1 + k3,2 + k3,3

�

,

Hence, the general pattern is

y(N)n = y0 +
H
N

n
∑

i=1

kN ,i with kN ,i = f
�

t0 + (i − 1)
H
N

, y0 +
H
N

i−1
∑

j=1

kN , j

�

.

Notice that kN ,1 = k1,1 = f (t0, y0) for all N .

Now we can construct higher-order methods with help of the extrapolation formula from a), by

defining TN ,1 = y(N)N (replace j by N), to get

T2,2 = 2T2,1 − T1,1 = y0 +Hk2,1,

T3,2 = 3T3,1 − 2T2,1 = y0 +H
�

−k2,2 + k3,2 + k3,3

�

,

T3,3 =
3
2 T3,2 −

1
2 T2,2 = y0 +H

�

−2k2,2 +
3
2 k3,2 +

3
2 k3,3

�

.
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Convince yourself that

T4,4 = y0 +H
�

2k2,2 −
9
2

�

k3,2 + k3,3

�

+ 8
3

�

k4,2 + k4,3 + k4,4

�

�

.

In conclusion, we observe that T2,2, T3,3 and T4,4 can be considered as a solution after one step of

an explicit RK-method of order 2, 3 and 4, respectively. Their corresponding Butcher tableux are

T2,2 :

0 0

1/2 1/2

0 1

T3,3 :

0 0

1/2 1/2

1/3 1/3 0

2/3 1/3 0 1/3

0 −2 3/2 3/2

T4,4 :

0 0

1/2 1/2

1/3 1/3 0

2/3 1/3 0 1/3

1/4 1/4 0 0

2/4 1/4 0 0 0 1/4

3/4 1/4 0 0 0 1/4 1/4

0 2 −9/2 −9/2 8/3 8/3 8/3

3 Let A= (ai j), B = (bi j) ∈ Rn×n and x ∈ Rn.

a) Show that the spectral radius

ρ(A) =
n

max
i=1
|λi|,

where λ1, . . . ,λn are the eigenvalues of A, is not a norm on Rn×n.

Solution. For example, let

A=

�

0 α

0 0

�

,

where α 6= 0. Then ρ(A) = 0, but A 6= 0.

b) Prove that the Frobenius norm

‖A‖F =

 

n
∑

i=1

n
∑

j=1

|ai j|2
!1/2

=
Æ

tr(A A>)

is a norm on Rn×n.
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Solution. We prove the triangle inequality; the other properties are straightforward. To this end,

let ai· = (ai1, . . . , ain) denote the ith row of A. Then we use the triangle and Cauchy-Schwarz

inequalities in the vectorial (Rn) 2-norm and find that

‖A+ B‖2F =
n
∑

i, j=1

|ai j + bi j|2 =
n
∑

i=1

‖ai· + bi·‖22

≤
n
∑

i=1

�

‖ai·‖22 + 2‖ai·‖2‖bi·‖2 + ‖bi·‖22
�

= ‖A‖2F + 2
n
∑

i=1

‖ai·‖2‖bi·‖2 + ‖B‖2F

≤ ‖A‖2F + 2

� n
∑

i=1

‖ai·‖22

�1/2� n
∑

i=1

‖bi·‖22

�1/2

+ ‖B‖2F

= (‖A‖F + ‖B‖F)
2 .

Now take square roots on both sides. (In order to better see the application of Cauchy-Schwarz’

inequality, define the two vectors

a =
�

‖a1·‖2, . . . ,‖an·‖2
�

and b =
�

‖b1·‖2, . . . ,‖bn·‖2
�

.

Then
n
∑

i=1

‖ai·‖2‖bi·‖2 = 〈a, b〉2 ≤ ‖a‖2 ‖b‖2 =

� n
∑

i=1

‖ai·‖22

�1/2� n
∑

i=1

‖bi·‖22

�1/2

,

as desired.)

Comment: We have essentially shown that the 2-norm of a finite collection of 2-norms is a norm.

c) Establish that ‖ · ‖F is submultiplicative, that is,

‖AB‖F ≤ ‖A‖F‖B‖F,

and consistent/compatible with the Euclidean vector norm (2-norm), that is,

‖Ax‖2 ≤ ‖A‖F‖x‖2.

Solution. Let ai· = (ai1, . . . , ain) and a· j = (a1 j , . . . , an j) denote the ith row and jth column of A,

respectively. Cauchy-Schwarz’ inequality for the vectorial 2-norm yields

‖AB‖2F =
n
∑

i=1

n
∑

j=1

�

�

�

�

�

n
∑

k=1

aik bk j

�

�

�

�

�

2

=
n
∑

i=1

n
∑

j=1

�

�〈ai·, b· j〉2
�

�

2

≤
n
∑

i=1

n
∑

j=1

‖ai·‖22 ‖b· j‖
2
2 =

n
∑

i=1

‖ai·‖22
n
∑

j=1

‖b· j‖22 = ‖A‖
2
F ‖B‖

2
F.
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As regards compatibility, we have

‖Ax‖22 =
n
∑

i=1

�

�

�

�

�

n
∑

j=1

ai j x j

�

�

�

�

�

2

=
n
∑

i=1

�

�〈ai·, x〉2
�

�

2 ≤
n
∑

i=1

‖ai·‖22 ‖x‖
2
2 = ‖A‖

2
F ‖x‖

2
2,

again by Cauchy-Schwarz’ inequality.


