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TMA4215 Numerical Mathematics — Fall 2016

PROBLEM SET 7

1 Solve the linear system of equations Ax= b, where

A=







1 2 1

3 4 0

4 20 8






and b=







3

3

20






,

by naïve Gauss-elimination and Gauss-elimination with partial pivoting.

Solution. We display the result of each naïve GE-step on A. It is possible to place the multipliers in the

free slots, and they are underlined for emphasis. Moreover, the current pivot elements are framed.






1 2 1

3 4 0

4 20 8






∼







1 2 1

3 −2 −3

4 12 4






∼







1 2 1

3 −2 −3

4 −6 −14






.

Hence, the LU decomposition of A has

L =







1 0 0

3 1 0

4 −6 1






and U =







1 2 1

0 −2 −3

0 0 −14







Solving Ax= b is equivalent to first solving Ly = b and then Ux= y. Using the techniques of for-

ward and backward substitution yields x= (1,0, 2). Alternatively, we could have worked with the

augmented matrix [A | b] directly.

Partial pivoting is very similar to standard GE, except that the pivot in each column is the element

with maximum modulus. In addition, we keep track of the row-permutations in order for the final

matrix—which is U—to be upper triangular; the permutations vectors are shown below the matrices.






1 2 1

3 4 0

4 20 8






∼







1/4 −3 −1
3/4 −11 −6

4 20 8






∼







1/4 3/11 7/11

3/4 −11 −6

4 20 8







(1, 2,3) (no perm.) (3,2, 1) (1, 2,3) (no perm.)

Thus the LU factorization PA= LU has

P =







0 0 1

0 1 0

1 0 0






, L =







1 0 0
3/4 1 0
1/4 3/11 1






and U =







4 20 8

0 −11 −6

0 0 7/11






,

and we solve Ax= b by forward and backward subtitution as Ly = P−1b and Ux= y.
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2 This task demonstrates how a badly conditioned problem can be improved by simple means—in

this case, at least—and should be carried out in MATLAB.

The net domestic production of crude oil in Norway from 1986 to 2010 measured in standard

cubic metres (S m3) is provided in Table 1.

Table 1: Norwegian oil production in 1986–2010. Source: Statistics Norway.

Year
Oil production
�

106 S m3
�

1986 48.771
1990 94.542
1994 146.282
1998 168.744
2002 173.649
2006 136.577
2010 104.354

a) Find the interpolation polynomial of degree 6 for the points in the table with help of the MATLAB-

command polyfit. Notice that it complains about the polynomial being badly conditioned.

Solution. Let t denote the temporal variable. Then the polynomial is approximately

4.26× 10−5 t6 − 0.511t5 + 2550t4 − 6.80× 106 t3 + 1.02× 1010 t2 − 8.15× 1012 t + 2.71× 1015.
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Figure 1: Oil data with fitted polynomials.

b) Next, repeat the exercise, but change the time axis by counting the years from 1986. Do you still

get problems?

Solution. This time the fitted polynomial approximately becomes

6.46× 10−5 t6 − 4.55× 10−3 t5 + 0.123t4 − 1.58t3 + 9.33t2 − 7.27t + 48.8,

and the previous problems are gone; see Figure 1 for a comparison.
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c) In order to find the coefficients of the polynomial pn interpolating a collection of points {(t i , yi)}
n
i=0,

MATLAB solves the linear system

an tn
i + an−1 tn−1

i + · · ·+ a1 t i + a0 = yi , i = 0, . . . , n

with respect to ai ’s. Set up the corresponding coefficient-matrices for the cases in a) and b) and

check the condition numbers of both. What do you observe?

Hint: Use the command vander.

Solution. In matrix-form the linear system equals













tn
0 tn−1

0 . . . t0 1

tn
1 tn−1

1 . . . t1 1
...

...
. . .

...
...

tn
n tn−1

n . . . tn 1





























an

an−1
...

a1

a0

















=













y0

y1
...

yn













,

where the coefficient-matrix is known as a Vandermonde matrix. Thus, with help of the com-

mands vander and cond, the condition numbers—in the 2-norm—of the coefficient-matrices

in a) and b) approx. equal 7.36× 1034 and 7.06× 108, respectively. Vandermonde matrices are

notoriously ill-conditioned and our two cases show no exceptions. Case a), however, is much

worse than b), which is in agreement with Figure 1.

3 Given the iteration scheme

4xk+1 = −xk − yk + zk + 2,

6yk+1 = 2xk + yk − zk − 1,

−4zk+1 = −xk + yk − zk + 4,

prove that x(k) = (xk, yk, zk) converges to a limit x for all starting values x(0) as k→∞. What is the

limit x?

Solution. It is helpful to first rewrite the iteration scheme on the form

Px(k+1) = Nx(k) + b,

with

P = diag(4,6,−4), N =







−1 −1 1

2 1 −1

−1 1 −1






and b=







2

−1

4






.

We can also write this as x(k+1) = Bx(k) + P−1b, where B = P−1N , and the scheme converges for

any starting value if and only if the spectral radius ρ(B)< 1. Due to the fundamental relationship

ρ(B)< ‖B‖, it suffices to show that ‖B‖< 1 in some consistent matrix norm ‖ · ‖. Since ‖B‖∞ = 3/4,

for example, the scheme is convergent.
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As regards the limit, we must have Px= Nx+ b, or in other words, x solves the linear sys-

tem Ax= b, with A= P − N . Gaussian elimination yields x= 1
9(1, 1,−12). Another solution strategy

is simply to iterate until convergence.

4 Solve the following two systems of equations by Gauss–Seidel iterations:

a)







3 1 1

1 3 −1

3 1 −5













x

y

z






=







5

3

−1






. b)







3 1 1

3 1 −5

1 3 −1













x

y

z






=







5

−1

3






.

Use (0.1, 0.1,0.1) as the starting point. First do a few iterations by hand and then apply the at-

tached MATLAB-program gs.m. Comment on the results. Do they comply with theory?

Solution. Recall that the Gauss–Seidel scheme for a system Ax= b takes the form

x(k+1) = Bx(k) + L−1
∗ b,

where B = −L−1
∗ U is the iteration matrix and L∗ and U are the lower and strict upper triangular parts

of A, respectively—so that A= L∗ + U . We find that

a)

x(1) =







1.60

0.500

1.26






, x(2) =







1.08

1.06

1.06






and x(3) =







0.960 00

1.0333

0.982 67






.

The iterations seem to converge, which is reasonable since A is strictly diagonally dominant.

Notice also the same inference can be drawn from ρ(B)< ‖B‖∞ = 2/3< 1.

b)

x(1) =







1.6

−5.3

−17.3






, x(2) =







9.2

−115.1

−339.1






and x(3) =







153.067

−2155.700

−6317.033






.

This time the iterations diverge because ρ(B)≥ ‖B‖∞ = 61/3> 1.

5 The system




















4 −1 0 −1 0 0

−1 4 −1 0 −1 0

0 −1 4 0 0 −1

−1 0 0 4 −1 0

0 −1 0 −1 4 −1

0 0 −1 0 −1 4









































x1

x2

x3

x4

x5

x6





















=





















0

5

0

6

−2

6





















is to be solved by an SOR method as follows.

Comment: the matrix can be built quickly in MATLAB with toeplitz([4 −1 0 −1 0 0]) and setting

two elements to 0.
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a) Find an optimal ω and the corresponding ρ(Bω). If you prefer, use the attached MATLAB-function

rhoSOR.m, and plot ρ(Bω) as a function of ω.

Solution. Remember first that the SOR method with parameter ω for the system Ax= b equals

x(k+1) = Bωx(k) + fω,

where Bω = (D+ωL)−1
�

(1−ω)D+ωU
�

and fω =ω(D+ωL)−1b. Here we have decomposed A

into its diagonal component D, and strict lower and upper triangular components L and U ,

respectively. Note that some authors use the negative of L and U; this just leads to a corresponding

change of signs in Bω and fω.

It is reasonable to expect that the speed of convergence increases as ρ(Bω) gets smaller. Since A is

symmetric and positive definite (why?), the SOR method converges if and only if ω ∈ (0, 2)—see

Property 4.3 in the book by Quarteroni et al. As such,ωopt can be chosen as a minimizer of ρ(Bω)

with ω ∈ (0,2), or symbolically,

ωopt ∈ argmin
ω∈(0,2)

ρ(Bω).

With help of rhoSOR.m we may now write a script as follows.

% Problem data.

A = toeplitz([4 −1 0 −1 0 0]); A(3, 4) = 0; A(4, 3) = 0;

b = [0, 5, 0, 6, −2, 6]';

% Compute and plot spectral radius for each value of omega.

omega = 0:0.001:2;

rho = zeros(1, length(omega));

for i = 1:length(omega);

rho(i) = rhoSOR(A, omega(i));

end

plot(omega, rho);

% Find the spectral radius and the corresponding omega.

[rho_opt, index_opt] = min(rho);

omega_opt = omega(index_opt);

Figure 2 displays ρ(Bω) as a function ofω, and we find thatωopt ≈ 1.113, with ρ(Bωopt
)≈ 0.113.
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Figure 2: Spectral radius of Bω as a function of ω.
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b) Do 10 iterations with the optimal ω; you can for example put x(0) = 0. For each iteration, print

the error ‖x(k) − x‖2.

Hint: rewrite the routine gs.m to do SOR iterations.

Solution. The difference between gs.m and the code

for SOR is that we replace

x(i) = t / A(i, i);

with

x(i) = (1 − omega) * x(i) + omega * t / A(i, i);

and includeω as an input parameter. Usingωopt from a)

and x(0) = 0 yields the results in Table 2. Observe

that the rate of convergence is approximately equal

to ρ(Bωopt
)≈ 0.113.

Table 2: Errors in the SOR method
using ω=ωopt.

k ‖x(k) − x‖2
‖x(k) − x‖2
‖x(k−1) − x‖2

1 1.5401 0.39766

2 4.4071× 10−1 0.286 15

3 1.5087× 10−1 0.342 34

4 1.4298× 10−2 0.094 766

5 2.6222× 10−3 0.183 40

6 3.6698× 10−4 0.139 95

7 4.2805× 10−5 0.116 64

8 5.9554× 10−6 0.139 13

9 7.7858× 10−7 0.130 74

10 8.4566× 10−8 0.108 62

c) Repeat b) using other values of ω, e.g. 1.0 and 1.3. How does this affect the rate of convergence

observed in b)? Is this as expected? Find a value of ω for which ρ(Bω) = 1, and perform

iterations with values of ω around this value. How do the results comply with theory?

Solution. With ω= 1.0 (reducing SOR to Gauss–Seidel) and ω= 1.3, we obtain the list of errors

in Table 3. Noticably, the errors are not as good as in b). Observed convergence rate forω= 1.0 is

very close to ρ(B1)≈ 0.364, while the rate forω= 1.3 is roughly of the same size as ρ(B1.3) = 0.3.

It is expected that the spectral radius is a measure for the speed of convergence.

Graphically from Figure 2,

we see that ρ(Bω) = 1

when ω= 0 or 2. As seen

in Table 3, the SOR method

fails to converge for these val-

ues of ω. This agrees with

Property 4.3 in the book by

Quarteroni et al.

Table 3: Errors in the SOR method for various values of ω.

k
‖x(k) − x‖2

ω= 1 ω= 1.3 ω= 0.03 ω= 1.95

1 1.7567 1.2988 3.8111 2.7923

2 7.1870× 10−1 3.4412× 10−1 3.7511 2.6679

3 3.0347× 10−1 1.7701× 10−1 3.6928 2.7647

4 1.1309× 10−1 9.1103× 10−2 3.6363 2.2049

5 4.1352× 10−2 2.7128× 10−2 3.5813 2.1055

6 1.5073× 10−2 3.0010× 10−3 3.5278 2.3842

7 5.4914× 10−3 1.1024× 10−3 3.4758 2.6278

8 2.0004× 10−3 2.3147× 10−4 3.4251 2.0705

9 7.2872× 10−4 1.0237× 10−4 3.3757 1.9220

10 2.6546× 10−4 4.7021× 10−5 3.3275 2.0927


