
NTNU
TMA4215 Numerical Mathematics — Fall 2016

PROBLEM SET 8

1 a) Implement the power method given in eq. (5.17) in the textbook by Quarteroni et al. Test it

on the matrix

A=







−2 −2 3

−10 −1 6

10 −2 −9







and use x(0) = (1,0,0) as a starting value. Compare your result with that of MATLAB’s built-in

function eig.

Solution. One way to code the method is as follows, where x denotes the initial vector with

Euclidean norm equal to 1 and nmax is the maximum number of iterations. We overwrite x as

much as possible to save memory and also avoid 1 unnecessary computation of the product A * x
with help of the temporary variable z.

function lambda_dominant = eig_power(A, x, nmax)

z = A * x;

for n = 1:nmax

x = z;

x = x / norm(x);

z = A * x;

lambda_dominant = dot(x, z);

end

end

Matrix A has spectrum {−12,−3,3}, which MATLAB’s eig (almost) reproduces in double precision.

15 iterations of the power method yields the dominant eigenvalue λdom ≈ −12+ 9.313× 10−9.

Comment: Google’s PageRank algorithm has—at least previously—employed the power method

to rank websites in their search engine results.

b) When you are sure to have a working code, try it on the matrix

B =







5 1 −1

1 11 7

−1 7 11







using the same x(0) as above. What is the result after 20 iterations? After 100? Explain what you

observe.

Solution. Matrix B has eigenvalue spectrum {3,6, 18} and 20 iterations of the power method

gives λdom ≈ 6− 1.362× 10−12. Iterating 100 times, however, results in λdom = 18 in double

Page 1 of 6



TMA4215 Numerical Mathematics Problem Set 8 Page 2 of 6

precision. There are two reasons for this behavior: first, the power method assumes that α18 6= 0

in the representation

x(0) = α3v3 +α6v6 +α18v18

of the initial vector in terms of the eigenvectors {vi} associated with the eigenvalues—indices

correspond naturally to eigenvalues. But in this case,

v3 = (1,−1, 1), v6 = (2,1,−1) and v18 = (0, 1,1),

so that α3 = 1/3= α6 and α18 = 0. Hence, the power method—theoretically—actually finds the

second dominant eigenvalue, which is 6; second, numerically, rounding errors gradually introduce

a nonzero component along v18 in the sequence {x(k)}. This is picked up by the algorithm –

think of it as restarting using a new x(0) with a component in the direction of v18 – and gives

convergence to the dominant eigenvalue 18.

c) Now implement the shifted inverse method—also called the inverse power method—in eq. (5.28)

in Quarteroni et al. and test your function on the matrices from a) and b).

Solution. The inverse power method approximately finds the eigenvalue of a matrix A which

is closest to a given number µ (mu in MATLAB) by applying the power method to the ma-

trix M−1
µ = (A−µI)−1. In order to save computations, we first compute the LU decomposition

PMµ = LU

of Mµ = A−µI . The solution of Mµx(k) = x(k−1) then becomes

x(k) = U−1
�

L−1Px(k−1)
�

.

If µ already is an eigenvalue of A, the program terminates immediately. Moreover, as in a), x is

overwritten as much as possible.

function lambda = eig_invpower(A, mu, x, nmax)

[L, U, P] = lu(A − mu * eye(size(A)));

assert(abs(prod(diag(U))) > 1e3 * eps, 'Stop: mu is an eigenvalue of A')

for n = 1:nmax

x = U \ (L \ (P * x));

x = x / norm(x);

lambda = dot(x, A * x);

end

end

Several experiments on A and B indicate that the shifted inverse method seems to be efficient

as long as µ is reasonably close to an exact eigenvalue. But, for example, with too few iterates

and µ� 18 for matrix B, the algorithm tends to find λ≈ 6 instead of λ≈ 18.

d) Apply the QR algorithm in eq. (5.32) in Quarteroni et al. on the two matrices from a) and b) and

explain your findings.



TMA4215 Numerical Mathematics Problem Set 8 Page 3 of 6

Solution. A simple implementation of the QR algorithm is given in the listing to the left, while the

right-hand side listing displays a more memory-efficient version. In both cases, the orthogonal

input matrix Q is optional and defaults to the identity.

function T = eig_qr(A, nmax, Q)

if (nargin == 3)

T = Q' * A * Q;

end

for n = 1:nmax

[Q, R] = qr(T);

T = R * Q;

end

end

function A = eig_qr(A, nmax, Q)

if (nargin == 3)

A = Q' * A * Q;

end

for n = 1:nmax

[A, R] = qr(A);

A = R * A;

end

end

Testing on matrix B from b) gives

T ≈







6.0000 6.0416× 10−9 −8.2863× 10−3

6.0416× 10−9 18.000 1.0938× 10−5

−8.2863× 10−3 1.0938× 10−5 3.0000







to five significant figures after just 8 iterations, while matrix A yields

T ≈







−12.000 10.733 −7.6023

−6.8243× 10−5 −1.7999 −1.6001

2.0472× 10−4 −3.6002 1.8000






.

Eigenvalues ±3 of A coincide—to four digits—with the eigenvalues of the lower right 2× 2

submatrix of T .

2 Let In be the n× n identity matrix, v ∈ Rn and θ ∈ R. Prove that the following matrices are

orthogonal:

a) Ω =

�

cosθ − sinθ

sinθ cosθ

�

. b) Q = In − 2
1

v>v
vv>.

Also, show that Q is symmetric.

Solution. a) Using the identity cos2 θ + sin2 θ = 1, it is immediate that Ω>Ω = I2.

b) Since In is symmetric and
�

vv>
�>
= v>>v> = vv>, it follows that Q is symmetric. Hence, utilizing

�

vv>
� �

vv>
�

= v
�

v>v
�

v> =
�

v>v
�

vv>,

because v>v is a scalar, yields

Q>Q =Q2 = In − 4
1

v>v
vv> + 4

1

(v>v)2
�

vv>
� �

vv>
�

= In.



TMA4215 Numerical Mathematics Problem Set 8 Page 4 of 6

3 Find by hand the reduced QR factorization of the matrix

A=







4 4

0 2

3 3







using the Gram–Schmidt orthogonalization process.

Solution. Let a1 = (4, 0,3) and a2 = (4,2, 3) be the two columns of A. Then the Gram–Schmidt

process works as follows:

u1 = a1, q1 =
u1

‖u1‖2
,

u2 = a2 − 〈a2,q1〉q1, q2 =
u2

‖u2‖2
,

and {q1,q2} is an orthonormal basis for the column space of A. Moreover, we can express a1 and a2

as

a1 = 〈a1,q1〉q1 and a2 = 〈a2,q1〉q1 + 〈a2,q2〉q2.

This can be written in matrix form as A=QR, where

Q = [q1 q2] and R=

�

〈a1,q1〉 〈a2,q1〉
0 〈a2,q2〉

�

.

Routine calculations now yield

Q =







4/5 0

0 1
3/5 0






and R=

�

5 5

0 2

�

.

4 The Householder QR factorization of A∈ Rn×m, where n≥ m, is given by the following algorithm:

for k = 1 to m do

x← Ak:n,k

vk := x+ sign(x1)‖x‖2e1

vk← vk/‖vk‖2
Ak:n,k:m← Ak:n,k:m − 2vk

�

v>k Ak:n,k:m

�

end for
Here Ai: j,k:`—omitting colon(s) if i = j and/or k = `—denotes the elements of A in accordance

with MATLAB’s indexing convention. This algorithm transforms A into the upper trapezoidal ma-

trix R ∈ Rn×m in the QR decomposition, and is implemented in the attached file householder.m. It

does not, however, produce Q, but we know that

Q =Q1Q2 · · ·Qm,

where

Q1 = In − 2v1v>1 and Qk =

�

Ik−1 0

0 In−k+1 − 2vkv>k

�

for k = 2, . . . , m.



TMA4215 Numerical Mathematics Problem Set 8 Page 5 of 6

a) Apply the algorithm first by hand and then with householder.m to the matrix in Exercise 3. Also,

find Q1 and Q2, and compute Q. Compare with the results from MATLAB’s built-in function qr.

Solution. Hand calculations and householder.m both give

x= (4, 0,3), v1 = (9,0, 3), v1← (3,0, 1)/
p

10, A←







−5 −5

0 2

0 0






,

x= (2, 0), v2 = (4,0), v2← (1,0), R= A←







−5 −5

0 −2

0 0






.

Moreover, we find that

Q1 =







−4/5 0 −3/5

0 1 0

−3/5 0 4/5






, Q2 =







1 0 0

0 −1 0

0 0 1






and Q =Q1Q2 =







−4/5 0 −3/5

0 −1 0

−3/5 0 4/5






,

and both Q and R match exactly the output from qr, except for an unimportant change of signs

in the second column of Q and R2,2.

b) Let x ∈ Rn and remember that Q ∈ Rn×n. Show that the product Qx is performed by the following

procedure:

for k = m downto 1 do

xk:n← xk:n − 2vk(v>k xk:n)

end for

How can we use this to form Q itself?

Solution. Since Q =Q1 · · ·Qm, the product Qx can be calculated recursively as

x←Qkx for k = m, . . . , 1,

where we overwrite x in each step. By definition, Qk leaves the first k− 1 components of x

unchanged, whereas the latter components become

xk:n←
�

In−k+1 − 2vkv>k
�

xk:n = xk:n − 2vk(v
>
k xk:n).

In total, this gives the procedure above. As regards how to form Q itself, observe first that

Q =QIn =Q
�

e1 e2 . . . en

�

=Qe1 +Qe2 + · · ·+Qen,

where ei is the ith column of In. Therefore, we can apply the given algorithm to the ei ’s to get all

the columns Qei of Q.

c) Extend householder.m to also return Q, and compare your result with qr.

Solution. Using the idea in b), we can extend householder.m as follows.



TMA4215 Numerical Mathematics Problem Set 8 Page 6 of 6

function [Q, R] = householder(A)

% Householder QR decomposition.

[n, m] = size(A);

% Compute R and store the v_k vectors in V.

V = zeros(n, m);

for k = 1:m

x = A(k:n, k);

v = x;

v(1) = x(1) + sign(x(1)) * norm(x);

v = v / norm(v);

V(k:n, k) = v;

A(k:n, k:m) = A(k:n, k:m) − 2 * v * (v' * A(k:n, k:m));

end

R = A;

% Compute Q.

Q = eye(n);

for i = 1:n

for k = m:−1:1
Q(k:n, i) = Q(k:n, i) − 2 * (V(k:n, k)' * Q(k:n, i)) * V(k:n, k);

end

end

end

The output when applied to the matrix in Exercise 3 is identical to that of qr, except for the

insignificant change of signs observed in a).

d) Let A be the Hilbert matrix of dimension 8 – you can build it in MATLAB by typing A = hilb(8).

Find the QR decomposition of A both via the Gram–Schmidt orthogonalization process—included

in the attached file GramSchmidt.m for convenience—and the Householder transformations.

How well will Q>Q approximate I8 in the two cases?

Solution. We omit printing the numerical values for Q and R, but note that R from the Gram–

Schmidt process by construction at least has perfect zeros on its subdiagonal. One way to measure

how well Q>Q approximates I8 is to compute ‖Q>Q− I8‖ in some norm. In the 2-norm, for

example, we find that

Householder: ‖Q>Q− I8‖2 ≈ 2.3535× 10−15,

and Gram–Schmidt: ‖Q>Q− I8‖2 ≈ 1.0323.

As seen, Householder transformations are superior to the basic Gram–Schmidt algorithm, which

is inherently numerically unstable.


