TMA4215 Numerical Mathematics — Fall 2016

NTN
U PROBLEM SET 9

A sequence {x(®} from an iterative method is said to converge to x with rate/order p > 1ina

norm || - || if
[+ — x|

M~ = 7 > X
I —x[lP 0 as k — oo

We write x;, instead of x) when x is a scalar. Also, when p = 1, we say that {x)} converges to x
* linearly if u € (0,1);

» superlinearly, that is, asymptotically faster than linear, if u = 0;

« or sublinearly, that is, asymptotically slower than linear, if u = 1 but still x9) — x 1.

Suggestively, convergence is called quadratic when p = 2, cubic when p = 3, and so on. Note, however,
that convergence rates can be nonintegral—for example, the classical secant method for root-finding
is locally convergent with order equal to the golden ratio.

What is the best (largest) order of convergence for the following sequences?
a) X = 37k, b) x; = (—1)*(k+1)72. c) xp = w5

Solution. a) Since

|xk+1 | — 3k(p_1)_1

oo ifp>1;
|xx [P k—o0

s ifp=1,

it follows that {x;} converges linearly to 0 with u =1/s.

b) We have x; — 0 and

X1l _((k+1)P)2 oo ifp>1;
| [P k—00

S\ k+2 1 ifp=1,
so the rate of convergence is sublinear.
¢) This time

|xk+1 | _ 7_(5k(p_5)
| [P ’

which yields that the order of convergence is quintic, with u = 1.

1 This follows implicitly for all the other cases by the ratio test for sequences.
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Recall that Newton’s method
f(x)

X = Xj —
T )

applied to a twice continuously differentiable function f : R — R is locally quadratically convergent

provided that the root a is simple. If, however, a has multiplicity m > 1, in other words, if

fl@=f(@==f"Da)=0 and f™(a)#0

for a sufficiently smooth f € C™(R), then the rate of convergence is just linear. In this exercise, you
will establish that the modified Newton scheme

f(x)

Xk4+1 :xk_mf/(xk) (*)

retains the quadratic convergence speed in the presence of a root a@ with multiplicity m.

a) Show that a is a fixed point of the function ¢(x) = x —mf (x)/f’(x). Hint: 'Hopital’s rule.

Solution. By I’'Hépital’s rule and the multiplicity of a,

fla _ f@_  _f" D@ _0
frla)  f"(a) f(a)

because f™ V(a) =0 and f™(a) # 0. Thus ¢(a) = a.

b) Prove that ¢’(a) = 0. Hint: Write f as f (x) = (x — a)™h(x) for some function h satisfying h(a) # 0
before you calculate f'(x) and f”(x).

Solution. Routine calculations give

/ fO)f"(x)
¢ (X): 1—m+mf/(—x)2,
with
100 = (x— )™ [mh(x) + (x — @)k (x)]
and

£7(x) = (x — a)"2[m(m— 1)h(x) + 2m(x — a)h’(x) + (x — a)*h"(x)].
Since h(a) # 0, we find that

FOOF"(x) ) [m(m —1)h(x) +2m(x — a)h’(x) + (x — a)*h” (x)]

frxz [mh(x) + (x — )'(x) ]
m(m—1) 1_ 1
x—a m2 - m’

and so ¢’(a) =0, as desired.
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c) Let e, = x; — a be the error at step k and show that

e = 59" (8)e?

for some £ between x; and a. Now deduce that () achieves quadratic convergence speed.

Solution. Notice first that e; 1 = Xj1; — @ = ¢ (xr) — ¢ (a) from (%), the definition of ¢ and a).

Hence, by Taylor expansion and b),
exr1 = ¢/ (@) kg —a) + 30" ()i — a)* = 30" (E)e}
for some £ between x; and a. Consequently, quadratic convergence rate follows from

e
lim 21 = 1¢"(a),
k—o0 ek

where we have used that & — a as x; — a and the continuity of ¢”.

Let G: R — R3 be given as

%(1 +2 cos(xlxz))

G(x) = (g1(x), 82(x), 83(x)) = | 34/x? +sinx5 +1.06— 0.1,

2 (1—e™%2)—F

where x = (x;, x5, x3). Show that the fixed-point iteration x**1) = G(x(k)) converges towards a

unique fixed point for all starting vectors x(%) in the closed cube
D= {x€R3 =1 < xq9,X9,x3 < 1}.
Also, verify the result numerically.

Solution. If we can show that G is a contraction—that is, a Lipschitz function with Lipschitz constant
less then 1—satisfying G(D) C D, then Banach’s fixed-point theorem guarantees the existence of a

unique fixed point in D.
It can be seen that
g1(1,1,x3)~ 0.34 < g(x1,X9,x3)< 0.5 = g1(0, x5, x3);
g5(0,x5,—1) &~ —0.048 < go(x1,x9,x3) < 0.09 ~ g5(1,x5,1);
g3(—1,1,x3) ~ —0.61 < g3(x1,X9,x3) < —0.49 ~ g5(1,1, x3),

so that, indeed, G(D) C D. Furthermore, from the mean value theorem we know that contractivity

of G is assured provided
3
9gi
35,21 3, )

<1 forall xeD.
— axl
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Some calculations yield that

E

281 < 0.281, 9811 <0281, 981\ _
0x; dxy 9x3

2 2 5

82| - 0.067, 821, 2821 2 0.119,
axl axz ax3

E 2 E

283 < 0.136, 2831 < 0.136, 98| _,
3x1 8x2 ax?)

for all x € D, which means that

3

max E

i=1,2,3 4
j=1

Hence, G has a unique fixed point in D.

ogi
7, )

< max{0.562,0.186,0.272} = 0.562 < 1.

The fixed point equals x = %(3, 0,—m) and the following script in MATLAB demonstrates that the

fixed-point iteration converges for any x, € D.

G =@(x) [(1+2x* cos(x(1) .x x(2))) / 6;
sqrt(x(1l).72 + sin(x(3)) + 1.06) / 9 — .1;
(1 — exp(—x(1) .*x x(2))) / 20— (pi / 6)];
fixedpt = [.5; 0; —pi / 6];

% Run fixed—point iteration with random starting points
% and compute maximum absolute error of all tests.
tests = 100;
testpoints = —1 + 2 * rand(3, tests);
for n = l:tests

for k = 1:13

testpoints(:, n) = G(testpoints(:, n));

end
end
max_abs_error = max(max(abs(testpoints — repmat(fixedpt, 1, tests))))

Noticeably, convergence is obtained after just 13 iterations for all the tests.
Consider the system of equations

2, .2 _ 1.
x{+x;=1;
xf —Xx5 =0,
which has two solutions—one in the region —1 < x;, x, < 0 and the other one in 0 < xq,x, < 1. Try

a fixed-point scheme based on the formulation

X1 = ¥/X2;
X9 = 1—x%,
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and show—with explanation—that it converges for suitable starting values. How would you select

the starting values?

Hint: Tt is simpler to do the analysis if you consider two subsequent iterations as one. That is, consider

instead the scheme x**? = G (G (x(k))) with the appropriate G. This decouples the iterations into

two scalar cases.

Solution. The fixed-point iteration for two steps is given by

x§k+1) _ B/X(k)’
k+1) _ ./ ()2
X, T=y 1= (Xl ) )

(k+2) (k)
1

1 and x

Since x gk+2)

only depend on x

and x

KD = 1Y,
x;k+2) _ /1 . (xgk))2/3.

, respectively, the original iteration can be viewed

as fixed-point iterations on the two separate scalar equations

x=g(x)=V1-x2

0.6 |-

0.4

Figure 1: Graphs of g1 and gy and their fixed-
points.

x=go(x)=v1—x2/3,

We now intend to use Banach’s fixed point
theorem on the g;’s, and for each of these
we need to find an interval [a,b] such
that g;([a,b]) C[a,b] and |g/(x)|<1 for
all x €[a, b].

Practically, we start by locating the fixed
points graphically. Figure 1 shows that g; has
a fixed point near 0.8, and g, one near 0.5.

Considering g, first, we calculate

X

/ P —

which implies that [gj(x)|<1 at least
when 0 < x <0.87. This interval, however,
does not satisfy g;([0,0.87]) € [0,0.87]. But
since g, is monotonically decreasing, some
trial and error reveals that

g1([0.76,0.87]) €[0.76,0.87].

Similarly, we can show that the two conditions are satisfied for g, on the interval [0.22,0.80].

In conclusion, the system of equations has a unique fixed point in the region

D={xeR?:0.76 < x; < 0.87,0.22 < x, < 0.80},

and the iterations converge for all starting values in D.



