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TMA4215 Numerical Mathematics — Fall 2016

PROBLEM SET 9

1 A sequence {x(k)} from an iterative method is said to converge to x with rate/order p > 1 in a

norm ‖ · ‖ if
‖x(k+1) − x‖
‖x(k) − x‖p

→ µ≥ 0 as k→∞.

We write xk instead of x(k) when x is a scalar. Also, when p = 1, we say that {x(k)} converges to x

? linearly if µ ∈ (0, 1);

? superlinearly, that is, asymptotically faster than linear, if µ= 0;

? or sublinearly, that is, asymptotically slower than linear, if µ= 1 but still x(k)→ x 1.

Suggestively, convergence is called quadratic when p = 2, cubic when p = 3, and so on. Note, however,

that convergence rates can be nonintegral—for example, the classical secant method for root-finding

is locally convergent with order equal to the golden ratio.

What is the best (largest) order of convergence for the following sequences?

a) xk = 3−k. b) xk = (−1)k (k+ 1)−2. c) xk = π−5k
.

Solution. a) Since

|xk+1|
|xk|p

= 3k(p−1)−1 −−−→
k→∞

�∞ if p > 1;

1/3 if p = 1,

it follows that {xk} converges linearly to 0 with µ= 1/3.

b) We have xk→ 0 and

|xk+1|
|xk|p

=
�

(k+ 1)p

k+ 2

�2

−−−→
k→∞

(

∞ if p > 1;

1 if p = 1,

so the rate of convergence is sublinear.

c) This time
|xk+1|
|xk|p

= π5k(p−5),

which yields that the order of convergence is quintic, with µ= 1.

1This follows implicitly for all the other cases by the ratio test for sequences.
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2 Recall that Newton’s method

xk+1 = xk −
f (xk)
f ′(xk)

applied to a twice continuously differentiable function f : R→ R is locally quadratically convergent

provided that the root α is simple. If, however, α has multiplicity m> 1, in other words, if

f (α) = f ′(α) = · · ·= f (m−1)(α) = 0 and f (m)(α) 6= 0

for a sufficiently smooth f ∈ Cm(R), then the rate of convergence is just linear. In this exercise, you

will establish that the modified Newton scheme

xk+1 = xk −m
f (xk)
f ′(xk)

(∗)

retains the quadratic convergence speed in the presence of a root α with multiplicity m.

a) Show that α is a fixed point of the function φ(x) = x −mf (x)/ f ′(x). Hint: l’Hôpital’s rule.

Solution. By l’Hôpital’s rule and the multiplicity of α,

f (α)
f ′(α)

=
f ′(α)
f ′′(α)

= · · ·= f (m−1)(α)
f (m)(α)

= 0,

because f (m−1)(α) = 0 and f (m)(α) 6= 0. Thus φ(α) = α.

b) Prove thatφ′(α) = 0. Hint: Write f as f (x) = (x −α)mh(x) for some function h satisfying h(α) 6= 0

before you calculate f ′(x) and f ′′(x).

Solution. Routine calculations give

φ′(x) = 1−m+m
f (x) f ′′(x)

f ′(x)2
,

with

f ′(x) = (x −α)m−1
�

mh(x) + (x −α)h′(x)�

and

f ′′(x) = (x −α)m−2
�

m(m− 1)h(x) + 2m(x −α)h′(x) + (x −α)2h′′(x)
�

.

Since h(α) 6= 0, we find that

f (x) f ′′(x)
f ′(x)2

=
h(x)

�

m(m− 1)h(x) + 2m(x −α)h′(x) + (x −α)2h′′(x)
�

�

mh(x) + (x −α)h′(x)�2

−−→
x→α

m(m− 1)
m2

= 1− 1
m

,

and so φ′(α) = 0, as desired.
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c) Let ek = xk −α be the error at step k and show that

ek+1 =
1
2φ
′′(ξ)e2

k

for some ξ between xk and α. Now deduce that (∗) achieves quadratic convergence speed.

Solution. Notice first that ek+1 = xk+1 −α= φ(xk)−φ(α) from (∗), the definition of φ and a).

Hence, by Taylor expansion and b),

ek+1 = φ
′(α)(xk −α) + 1

2φ
′′(ξ)(xk −α)2 = 1

2φ
′′(ξ)e2

k

for some ξ between xk and α. Consequently, quadratic convergence rate follows from

lim
k→∞

ek+1

e2
k

= 1
2φ
′′(α),

where we have used that ξ→ α as xk→ α and the continuity of φ′′.

3 Let G: R3→ R3 be given as

G(x) =
�

g1(x), g2(x), g3(x)
�

=











1
6

�

1+ 2 cos(x1 x2)
�

1
9

q

x2
1 + sin x3 + 1.06− 0.1

1
20

�

1− e−x1 x2
�− π

6











,

where x= (x1, x2, x3). Show that the fixed-point iteration x(k+1) = G
�

x(k)
�

converges towards a

unique fixed point for all starting vectors x(0) in the closed cube

D =
�

x ∈ R3 : −1≤ x1, x2, x3 ≤ 1
	

.

Also, verify the result numerically.

Solution. If we can show that G is a contraction—that is, a Lipschitz function with Lipschitz constant

less then 1—satisfying G(D) ⊆ D, then Banach’s fixed-point theorem guarantees the existence of a

unique fixed point in D.

It can be seen that

g1(1, 1, x3)≈ 0.34 < g1(x1, x2, x3)≤ 0.5 = g1(0, x2, x3);

g2(0, x2,−1)≈ −0.048< g2(x1, x2, x3)< 0.09≈ g2(1, x2, 1);

g3(−1, 1, x3)≈ −0.61 < g3(x1, x2, x3)< −0.49≈ g2(1,1, x3),

so that, indeed, G(D) ⊆ D. Furthermore, from the mean value theorem we know that contractivity

of G is assured provided

max
i=1,2,3

3
∑

j=1

�

�

�

�

∂ gi

∂ x j
(x)

�

�

�

�

< 1 for all x ∈ D.
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Some calculations yield that
�

�

�

�

∂ g1

∂ x1

�

�

�

�

< 0.281,

�

�

�

�

∂ g1

∂ x2

�

�

�

�

< 0.281,

�

�

�

�

∂ g1

∂ x3

�

�

�

�

= 0,
�

�

�

�

∂ g2

∂ x1

�

�

�

�

< 0.067,

�

�

�

�

∂ g2

∂ x2

�

�

�

�

= 0,

�

�

�

�

∂ g2

∂ x3

�

�

�

�

< 0.119,
�

�

�

�

∂ g3

∂ x1

�

�

�

�

< 0.136,

�

�

�

�

∂ g3

∂ x2

�

�

�

�

< 0.136,

�

�

�

�

∂ g3

∂ x3

�

�

�

�

= 0,

for all x ∈ D, which means that

max
i=1,2,3

3
∑

j=1

�

�

�

�

∂ gi

∂ x j
(x)

�

�

�

�

<max
�

0.562,0.186, 0.272
	

= 0.562< 1.

Hence, G has a unique fixed point in D.

The fixed point equals x= 1
6(3,0,−π) and the following script in MATLAB demonstrates that the

fixed-point iteration converges for any x0 ∈ D.

G = @(x) [(1 + 2 * cos(x(1) .* x(2))) / 6; ...

sqrt(x(1).^2 + sin(x(3)) + 1.06) / 9 − .1; ...

(1 − exp(−x(1) .* x(2))) / 20 − (pi / 6)];

fixedpt = [.5; 0; −pi / 6];

% Run fixed−point iteration with random starting points

% and compute maximum absolute error of all tests.

tests = 100;

testpoints = −1 + 2 * rand(3, tests);

for n = 1:tests

for k = 1:13

testpoints(:, n) = G(testpoints(:, n));

end

end

max_abs_error = max(max(abs(testpoints − repmat(fixedpt, 1, tests))))

Noticeably, convergence is obtained after just 13 iterations for all the tests.

4 Consider the system of equations

x2
1 + x2

2 = 1;

x3
1 − x2 = 0,

which has two solutions—one in the region −1≤ x1, x2 ≤ 0 and the other one in 0≤ x1, x2 ≤ 1. Try

a fixed-point scheme based on the formulation

x1 = 3
p

x2;

x2 =
q

1− x2
1 ,



TMA4215 Numerical Mathematics Problem Set 9 Page 5 of 5

and show—with explanation—that it converges for suitable starting values. How would you select

the starting values?

Hint: It is simpler to do the analysis if you consider two subsequent iterations as one. That is, consider

instead the scheme x(k+2) = G
�

G
�

x(k)
��

with the appropriate G. This decouples the iterations into

two scalar cases.

Solution. The fixed-point iteration for two steps is given by

x (k+1)
1 = 3

r

x (k)2 , x (k+2)
1 =

6
r

1− �x (k)1

�2
,

x (k+1)
2 =

r

1− �x (k)1

�2
, x (k+2)

2 =
r

1− �x (k)2

�2/3
.

Since x (k+2)
1 and x (k+2)

2 only depend on x (k)1 and x (k)2 , respectively, the original iteration can be viewed

as fixed-point iterations on the two separate scalar equations

x = g1(x) =
6
p

1− x2 and x = g2(x) =
p

1− x2/3.
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Figure 1: Graphs of g1 and g2 and their fixed-
points.

We now intend to use Banach’s fixed point

theorem on the gi ’s, and for each of these

we need to find an interval [a, b] such

that gi([a, b]) ⊆ [a, b] and |g ′i(x)|< 1 for

all x ∈ [a, b].

Practically, we start by locating the fixed

points graphically. Figure 1 shows that g1 has

a fixed point near 0.8, and g2 one near 0.5.

Considering g1 first, we calculate

g ′1(x) = −
x

3(1− x2)5/6
,

which implies that |g ′1(x)|< 1 at least

when 0≤ x ≤ 0.87. This interval, however,

does not satisfy g1([0, 0.87]) ⊆ [0,0.87]. But

since g1 is monotonically decreasing, some

trial and error reveals that

g1([0.76,0.87]) ⊆ [0.76,0.87].

Similarly, we can show that the two conditions are satisfied for g2 on the interval [0.22, 0.80].

In conclusion, the system of equations has a unique fixed point in the region

D =
�

x ∈ R2 : 0.76≤ x1 ≤ 0.87,0.22≤ x2 ≤ 0.80
	

,

and the iterations converge for all starting values in D.


