

TMA4215 Numerical Mathematics — Fall 2016

PROBLEM SET 10

1 Determine the values of (a, b, c) such that

NTNU

$$S(x) = \begin{cases} S_0(x) = x^3 & x \in [0,1) \\ S_1(x) = \frac{1}{2}(x-1)^3 + a(x-1)^2 + b(x-1) + c & x \in [1,3] \end{cases}$$

is a cubic spline. Is it a natural cubic spline?

Solution. Obviously, both S_0 and S_1 are polynomials of the degree 3. We then have to check that $S \in C^2[0,3]$, that is

$$S_0(1) = S_1(1) \qquad \Rightarrow \qquad c = 1$$

$$S'_0(1) = S'_1(1) \qquad \Rightarrow \qquad b = 3$$

$$S''_0(1) = S''_1(1) \qquad \Rightarrow \qquad a = 3$$

This is a *natural* cubic spline if in addition S''(0) = S''(3) = 0. The first condition is satisfied, the second not, so this not a natural cubic spline.

2 Given the data set:

x	1.2	1.5	1.6	2.0	2.2
f(x)	0.4275	1.139	0.8736	-0.9751	-0.1536

Find the linear spline L(x) interpolating the data set, and give the value for L(1.8).

Solution. The linear spline L(x) consist of piecewise linear polynomials, and it is continuous. Thus

$$L_i(x) = f(t_i) + (f(t_{i+1}) - f(t_i))/(t_{i+1} - t_i)(x - t_i)$$

such that

$$L_0(x) = 2.3717x - 2.4185, 1.2 \le x \le 1.5$$

$$L_1(x) = -2.6540x + 5.1200, 1.5 \le x \le 1.6$$

$$L_2(x) = -4.6218x + 8.6284, 1.6 \le x \le 2.0$$

$$L_3(x) = 4.1075x - 9.1901, 2.0 \le x \le 2.2$$

and in particular $L_2(1.8) = -0.05075$.

3

a) Write down the 4 cubic Bernstein polynomials, $b_{3,i}(t)$, i = 0, 1, 2, 3.

Solution.

$$b_{3,0}(t) = (1-t)^3$$
, $b_{3,1}(t) = 3t(1-t)^2$, $b_{3,2}(t) = 3t^2(1-t)$, $b_{3,3}(t) = t^3$.

b) Given the control points

$$\mathbf{P}_0 = (0,0), \qquad \mathbf{P}_1 = (1,2), \qquad \mathbf{P}_2 = (2,-1), \qquad \mathbf{P}_3 = (1,0).$$

Write up and plot the corresponding Bezier curve,

$$\mathbf{B}(t) = \sum_{i=0}^{3} \mathbf{P}_i b_{3,i}(t).$$

Prove that the straight line between the first two control points is tangential to the curve in P_0 , similar is the straight line between the last two point tangential to the curve in P_3 .

Figure 1: The Bezier curve $\mathbf{B}(t)$ (blue) and the control points.

Solution.

$$\mathbf{B}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} 3t(1-t)^2 + 6t^2(1-t) + t^3 \\ 6t(1-t)^2 - 3t^2(1-t) \end{pmatrix} = \begin{pmatrix} -2t^3 + 3t \\ 9t^3 - 15t^2 + 6t \end{pmatrix}$$

see figure 1. For the last part: The slope of the curve between \mathbf{P}_0 and \mathbf{P}_1 is 2, and the slope between \mathbf{P}_3 and \mathbf{P}_2 is -1. If $y'(t) \neq 0$ then dy/dx = y'(t)/x'(t). We have

$$\frac{dB}{dt} = \begin{pmatrix} -6t+3\\27t^2-30t+6 \end{pmatrix}$$

So, at t = 0 we have dy/dx = 2 and at t = 1 we have dy/dx = -1.

c) Assume that you know the value of a function f(x) and its derivative f'(x) for two values of x,

say x_0 and x_1 , with $h = x_1 - x_0 > 0$. Let $x = x_0 + th$ and let

$$B(x) = B(x_0 + th) = \sum_{i=0}^{3} a_i b_{3,i}(t).$$

Find a_i , i = 0, 1, 2, 3 such that

$$B(x_i) = f(x_i), \qquad B'(x_i) = f'(x_i), \qquad i = 1, 2$$

where B' = dB/dx.

Solution. We have that

$$B'(x) = \frac{1}{h}\frac{dB}{dt} = \frac{1}{h}\sum_{i=0}^{3}a_{i}\frac{db_{3,i}}{dt}$$

where

$$\frac{db_{3,0}}{dt} = -3(1-t)^2, \qquad \frac{db_{3,1}}{dt} = 3(1-t)(1-3t), \qquad \frac{db_{3,2}}{dt} = 3t(2-3t), \qquad \frac{db_{3,1}}{dt} = 3t^2.$$

The following conditions has to be fullfilled:

$$B(x_0) = f(x_0) = a_0, \qquad B(x_1) = f(x_1) = a_3, B'(x_0) = f'(x_0) = 3h(a_1 - a_0), \qquad B'(x_1) = f'(x_1) = 3h(a_3 - a_2),$$

giving

$$a_0 = f(x_0),$$
 $a_1 = f(x_0) + \frac{1}{3}hf'(x_0),$ $a_2 = f(x_1) - \frac{1}{3}hf'(x_1),$ $a_3 = f(x_1).$