
NTNU
TMA4215 Numerical Mathematics — Fall 2016

STUDENT PROJECT

PART 1: IMPLEMENTATION OF A STIFF ODE SOLVER

1.1 BACKGROUND

In order to solve a possibly stiff initial value problem

y ′ = f (t, y) y(t0) = y0, t0 ≤ t ≤ tend, (1)

the following embedded Runge–Kutta scheme is suggested:

0 0 0 0 0

2γ γ γ 0 0

1 −4γ2+6γ−1
4γ

−2γ+1
4γ γ 0

1 6γ−1
12γ

−1
12γ(2γ−1)

−6γ2+6γ−1
3(2γ−1) γ

bb
> −4γ2+6γ−1

4γ
−2γ+1

4γ γ 0

b> 6γ−1
12γ

−1
12γ(2γ−1)

−6γ2+6γ−1
3(2γ−1) γ

(2)

Here bb refers to the error estimating method, b represents the advancing method, and γ is some

real parameter. Using the fact that the first stage is explicit, and both the advancing and the error

estimating methods are stiffly accurate, the RK-scheme can be formulated as follows (convince yourself

that this is correct):

Y1 = yn, (3a)

Yi = yn + h
i−1
∑

j=1

ai j f
�

tn + c jh, Yj

�

+ hγ f (tn + cih, Yi) for i = 2,3, 4, (3b)

yn+1 = Y4, (3c)

len+1 = Y4 − Y3. (Local error estimate) (3d)

Coefficients ai j and c j come from matrix A= (ai j) and c= (c1, . . . , c4) in (2), respectively, assuming

standard Butcher tableau format.

In this project, you will first investigate relevant properties of the RK-method, justify the theoretical

results by numerical experiments, and finally use it to solve some given problems.

Page 1 of 10

TMA4215 Numerical Mathematics Student Project Page 2 of 10

1.1.1 SOLUTION OF THE NONLINEAR SYSTEMS OF EQUATIONS

The only part of the implementation of an adaptive diagonally implicit RK-method which is not

covered by the lecture note, is how the underlying nonlinear equations should be solved. Hence, this

is explained here.

The stage values Yi for i = 2, 3 and 4 are sequentially computed—first Y2, then Y3, and finally Y4—

by a modified Newton method of the form

(I − hγJ)∆Y = hγ f
�

tn + cih, Y (k)i

�

− Y (k)i + Ki ,

Y (k+1)
i = Y (k)i +∆Y,

(4)

where I is the identity matrix, J = J(tn, yn) is the Jacobian, and Ki = yn + h
∑i−1

j=1 ai j f
�

tn + c jh, Yj

�

.

Noticeably, Ki has to be updated at each stage i, but remains constant through the iterations on k.

Use Y (0)i = Yi−1 as a starting value for the k-iteration, and stop the iteration when ‖∆Y ‖ ≤ TOLit

(success) or when k = MAXit (failure). In the latter case, reduce the stepsize h and try again. Observe

that the Newton matrix I − hγJ is only formed at the beginning of each step; it should neither be

updated between stages or within stages (k-iterations).

If time permits, you may improve the code further by keeping the Newton matrix over several

steps.

1.1.2 ERROR CONTROL AND STEPSIZE SELECTION

Use error per step (EPS) and local extrapolation. In addition, choose some maximum stepsize hmax,

and stop the integration with some error message if the stepsizes become unreasonable small.

1.2 THEORETICAL INVESTIGATIONS

Before applying the method, you should confirm that it has the properties we want for a stiff ODE-

solver. You should also choose the free parameter γ. More specifically:

1 Find the order of both the error estimating and advancing methods.

2 Find the stability functions R(z) and bR(z) for both methods, where the hat refers to the error

estimating method.

3 Find the stability constants R(∞) and bR(∞) of both methods. (NB! Matrix A is singular).

4 For the implementation, let γ be the root of R(∞) = 0 near 0.4. Find this root (numerically),

and the corresponding bR(∞).

5 Discuss the linear stability properties of both the advancing and the error estimating methods.

Plot the stability regions.

Include the results and how you found them in the report, but do not include the intermediate

calculus. You are free to use tools like MAPLE or WOLFRAM ALPHA, but simplify the expressions you

get as much as possible.

TMA4215 Numerical Mathematics Student Project Page 3 of 10

1.3 IMPLEMENTATION

In this part, you should implement the method (2) with γ found in 4 , including error estimation—

based on local extrapolation—and variable stepsizes. During the implementation process, we suggest

that you use the following test problems:

? Linear test problem:

y ′ =

�

−2 1

1 −2

�

y +

�

t

t + 3

�

, y(0) =

�

1

2

�

, tend = 1. (5)

This is a problem for which the exact solution is easy to find. Moreover, it is very convenient for

checking the nonlinear solver, since the Newton iteration will converge in one iteration (why?).

? Van der Pol equation:

y ′1 = y2, y1(0) = 2,

y ′2 = µ(1− y2
1)y2 − y1, y2(0) = 0.

(6)

In this case you may vary the stiffness of the problem. Try e.g. µ = 5, µ = 50 and µ = 500.

Typical integration intervals will be tend ≈ µ.

? The Robertson reaction:

y ′1 = −0.04y1 + 104 y2 y3, y1(0) = 1,

y ′2 = 0.04y1 − 104 y2 y3 − 3× 107 y2
2 , y2(0) = 0,

y ′3 = 3× 107 y2
2 , y3(0) = 0

(7)

on the interval 0≤ t ≤ 40.

Do the implementation of the ODE solver in the following steps:

6 Implement a function function [A, c, g, s] = method that returns the coefficient matrix A,

the vector c, the diagonal element γ and the number of stages s (which is 4 in this case).

Check that the function is correctly written by verifying the order conditions.

7 Implement a function onestep, doing one step of the RK-method using stepsize h. The function

call should typically be:

function [tnext, ynext, le, iflag] = onestep(f, jac, tn, yn, h, Tolit)

% [tnext, ynext, le, iflag] = onestep(f, jac, tn, yn, h, Tolit)

% Do one step with an implicit RK−method method.

% Input arguments:

% f, jac: the functions f(t, y) and Jac(t, y);

% tn, yn: time and state variables

% h: step size

% Tolit: tolerance for the Newton iterations.

% Output arguments:

TMA4215 Numerical Mathematics Student Project Page 4 of 10

% tnext, ynext: time and state variables after one step

% le: Local error estimator.

% iflag = 1: Iterations are successful

% = −1: Iterations fail; t and y are not updated

The most tricky part here is the implementation of the Newton iterations (4) from Section 1.3. First

verify it on the linear test problem. The Newton iteration should solve the linear problem in one

iteration.

8 Implement a constant-stepsize solver, using onestep from 7 . Make convergence plots, that is,

loglog plots of error vs. stepsize—similar to what you did during the exercise sessions in the class—for

both the advancing and the error estimating methods applied to all three test problems. Thus in total

there should be six graphs, but save space by plotting more than one graph in a figure. Use tend = 1

in all cases, and set µ= 50 for the Van der Pol equation (6).

Remember that if the error satisfies ‖eN‖ ≈ Chp, then

log‖eN‖ ≈ log C + p log h.

As such, given two vectors H and Err containing the stepsizes and the corresponding global errors,

respectively, an numerical approximation to the order p can be found by

ord = polyfit(log(H),log(Err), 1);

pnum = ord(1)

Explain why this works.

NB! For computation of the numerical order, remove points where the error clearly is dominated

by rounding or iteration errors.

9 Write a complete code for solving ODEs by the RK-method in (2), including error estimation and

variable stepsizes. The algorithms are similar to how this is done for explicit RK-methods. Use the

function onestep which you have already implemented. The function call should be exactly like this:

function [t, y, iflag, nfun, njac] = RKs(f, jac, t0, tend, y0, Tol, h0)

where iflag indicates whether the solver was successful (iflag≥ 1) or not, and nfun and njac
are the numbers of function and Jacobian evaluations, respectively.

For the Newton iterations (4), let TOLit = 0.1 · Tol, where Tol is the user-defined tolerance. If

the iterations fail to converge, reduce the stepsize by a factor of 0.5.

Test the code on all three test problems. Present plots of the solution together with the stepsizes.

For the Van der Pol case (6), you will probably prefer to plot y1 only, and not y2—at least for large

values of µ (try it).

10 Include counters nfun and njac that count all function evaluations and all Jacobian evaluations

done during the integration of one problem.

Make work-precision diagrams. That means: solve one of the problems for different tolerances,

e.g. Tol = 10−2, 10−3, . . . , 10−8, and in each case, find the error at tend. For each value of Tol, let

TMA4215 Numerical Mathematics Student Project Page 5 of 10

the corresponding work be computed as

W = nfun + m * njac.

Plot work vs. error. Compare with the results from some of MATLAB’s solvers for stiff ODEs, and

comment on the results. To set the tolerance and to get the statistics for the MATLAB solvers, you can

write

sol = ode23s(f, tint, y0, options)

sol.stats

See the documentation for more information.

PART II: Choose one, and only one, of the following problems

2.1 EVENT DETECTION AND THE WOODPECKER TOY PROBLEM

Let y(t) be a solution of the ODE y ′ = f (t, y). Then find tev such that

g(tev, y(tev)) = 0

Such functionality has quite a lot of useful applications: You might want to find e.g. maximum or

minimum of your function, you want to know when a solution reaches a particular value. In this

assignment, the event handler will be used to detect points of discontinuities.

Example: Let an elastic ball fall from height y0. When the ball hits the floor, it bounces up again with

a slightly smaller speed than before. The model becomes

y ′′(t) = −9.81, y(0) = y0 > 0, y ′(0) = 0

from 0 to when the ball hits the floor at tev, that is when

y(tev) = 0, y ′(tev)< 0.

Continue the integration with new initial values (the ball bounces up again)

y ′+ = −0.9y ′−,

where the y ′− is the velocity just before the event, and y ′+ the velocity afterwards. And continue the

integration till the next time the ball hit the floor, etc.

Assignment: Construct and implement an event locator. Include it in your code in such a way that the

integration stops at that point, and the code returns to the main program. Test it on the bouncing

ball problem (some maximum stepsize will be helpful in this case) to make sure it works, and then

apply it on the following woodpecker toy model.

TMA4215 Numerical Mathematics Student Project Page 6 of 10

Hint: When an event is detected within a step, use Hermite interpolation to locate it more precisely.

Figure 1: The woodpecker toy [1].

Application: The woodpecker toy problem. The

problem was first described in [2], and the

following formulation is taken from [1]:

The woodpecker toy consists of

? a rod where the woodpecker glides down

? a sleeve which glides down the rod

? a woodpecker connected to the sleeve by

a spring

The woodpecker has two degrees of free-

dom: one rotational with respect to the rod

(angle θ) and one translational down the rod

(height z of the point S). The sleeve hinders

the woodpecker from moving down for angles

|θ | > |θK1|. In that case, there are no move-

ments in the vertical direction. The motion can

be subdivided into 5 phases:

a) θ > θK1:

The woodpecker swings to the right until it reaches the maximal amplitude and then back to the

left. The sleeve blocks the vertical movement. This phase ends when θ = θK1.

b) −θK1 < θ < θK1:

The woodpecker moves down due to gravitation. The rotation is counterclockwise (θ ′ < 0). The

phase ends when θ = −θK1, when the impact of the sleeve ends the movement in the z-direction.

c) −θK2 < θ < −θK1:

The woodpecker swings to the left until its beak hits the rod at θ = −θK2.

d) −θK2 < θ < −θK1:

The woodpecker bounces back again. The sleeve blocks vertical movement until θ = −θK1.

e) −θK1 < θ < θK1 :

The self blocking phase ends, and the woodpecker moves down again, until θ = θK1 where the

sleeve blocks, and the movements start from phase a) again.

The sleeve is modelled as a massless joint. Only small oscillations are considered. The following

system of differential equations is obtained; see [2] for details:

Phases a), c) and d): the sleeve blocks.

(I2 +m2 b2)θ ′′ = −cθ +m2 bggr (8)

TMA4215 Numerical Mathematics Student Project Page 7 of 10

Table 1: Constants in the woodpecker toy model.

a=0.025 [m] b=0.015 [m]
m1 = 0.0003 [kg] m2 = 0.0045 [kg]
d1 = 0.18335 d2=0.04766
θK1 = 10 ◦ θK2 = 12 ◦

I2 = 7 · 10−7 [kg m2] c = 0.0056 [Nm] ggr = 9.81 [m/s2]

Phases b) and e): with vertical movements.
�

I2 +m2 b2
�

1−
m2

m1 +m2

��

θ ′′ = −cθ , (9a)

(m1 +m2)z
′′ +m2 bθ ′′ = (m1 +m2)ggr. (9b)

In addition, we have the following impacts:

? Impact of the sleeve at the top:

θ ′+ = (1− d2)
�

θ ′− +
m2 b

I2 +m2 b2
z′−

�

.

? Impact of the sleeve at the bottom:

θ ′+ = (1− d1)
�

θ ′− +
m2 b

I2 +m2 b2
z′−

�

.

? Impact when the beak hits the rod:

θ ′+ = −θ
′
−.

The constants are given in Table 1.

2.2 DIFFERENTIAL-ALGEBRAIC EQUATIONS AND THE DIFFERENTIATOR CIRCUIT

Consider a system of differential equations on the form

M v′ = F(t, v), v(t0) = v0, (10)

where M is a constant, singular m × m matrix of rank d. We know that there exist nonsingular

matrices P and Q such that

PMQ =

�

Id 0

0 0

�

,

where Id is the identity matrix of dimension d. By the transformations

�

y

z

�

=Q−1v,

�

f (t, y, z)

g(t, y, z)

�

= PF(v),

TMA4215 Numerical Mathematics Student Project Page 8 of 10

the system can be rewritten in semi-explicit form:

y ′ = f (t, y, z), y(t0) = y0, (11a)

0= g(t, y, z), z(t0) = z0. (11b)

If gz (the Jacobian of g with respect to z) is nonsingular, then, according to the implicit function

theorem, the second equation g = 0 can be solved with respect to z. Thus z(t) = G(t, y(t)) for some

function G. Inserting this into the first equation yields the system

y ′(t) = f (t, y, G(t, y)) = ef (t, y), (12a)

z(t) = G(t, y), where z is the solution of g(t, y, z) = 0. (12b)

The first equation is just an ODE. Equation (10) is called a differential-algebraic equation (DAE), and

when gz is nonsingular, it is of index 1. The initial value v0 =Q · [y>0 z>0]
> is consistent if it satisfies

the algebraic constraint

g(t0, y0, z0) = 0.

Example: The transformation (10)⇒ (11)⇒ (12) can be illustrated with the following example:

v′1 − v′2 = −v3 y ′ = −z2 y ′ = −4y − 4sin t

−v′1 + v′2 = −4v2 ⇒ 0= 4y − 4z1 − z2 ⇒ z1 = − sin t

0= v1 + sin t 0= z1 + sin t z2 = 4y + 4 sin t

where y = v1 − v2, z1 = v1 and z2 = v3. The initial values v(0) = [0 −1 4]> are consistent.

But, even if a formulation (12) in principle exists, it is not necessarily easy to find an analytic

expression like we have here. Hence, we would prefer to solve the DAE in its original form (10).

Method (3) can be applied to (10) by

V1 = vn, (13a)

MVi = M vn + h
i−1
∑

j=1

ai j F
�

tn + c jh, Vj

�

+ hγF (tn + cih, Vi) for i = 2,3, 4, (13b)

vn+1 = V4, (13c)

len+1 = V4 − V3. (Local error estimate) (13d)

Assignment: Let consistent values vn = Q · [y>n z>n]
> be given. Moreover, let vn+1 be the solution

found by (13), and yn+1, zn+1 be the solutions when (3) is applied to the ODE in (12). Show the

similar result for the error estimate.

Rewrite your code to solve index 1 DAEs of the form (10). Use the example above as a test

problem, and confirm that the two formulations are equivalent. Then use your rewritten code to

solve the differentiator circuit:

TMA4215 Numerical Mathematics Student Project Page 9 of 10

V (t)

C
R

−

+

u1(t) u2(t) u3(t)

Ia(t)IQ(t)

Figure 2: The differentiator circuit.

Application: The differentiator circuit:

The differentiator circuit in Figure 2 consists

of an operational amplifier, a capacitance, and

a resistor. The purpose of the circuit is to dif-

ferentiate the input signal V (t) (with a change

of sign).

Circuit models consist of models for each

element in the circuit, glued together by Kir-

choff’s current and voltage laws. Several techniques for automatic generation of the circuit equations

exist. One of the more popular methods is modular nodal analysis, which applied to the differentiator

circuit results in the following DAE:

Cu′1 − Cu′2 = −IQ,

−Cu′1 + Cu′2 = −
1
R
(u2 − u3),

0=
1
R
(u2 − u3) + Ia,

0= −Au2 − u3,

0= −u1 + V.

Confirm that this is an index 1 DAE.

The parameters of the circuit are chosen as C = 10−12 [F], R = 104 [Ω] and A= 300, as suggested

in [3]. A typical time scale for the problem is 10−8 [s]. As input signal V (t) you can use

V (t) = 0.01 · sin
�

2π · 108 t
�

[V],

or the signal

0.5 · 10−8 1.0 · 10−8 1.5 · 10−8 2.0 · 10−8

0.01

[V]

t[s]

V (t)

or you may try your own signal. Choose initial values yourself, but make sure they are consistent.

NB! This is a small and linear system, so it can quite easily be rewritten as an ODE with 4 constraints.

You may want to do this for testing, but your code should work on the original problem.

TMA4215 Numerical Mathematics Student Project Page 10 of 10

REFERENCES

[1] Edda Eich-Soellner and Claus Führer. Numerical methods in multibody dynamics. European

Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart, 1998.

[2] F. Pfeiffer. Mechanische systeme mit unstetigen übergängen. Ingenieur-Archiv, 54:232–240, 1984.

[3] O. Schein and G. Denk. Numerical solution of stochastic differential-algebraic equations with

applications to transient noise simulation of microelectronic circuits. J. Comput. Appl. Math.,

100(1):77–92, 1998.

	1 Part 1: Implementation of a stiff ODE solver
	1.1 Background
	1.1.1 Solution of the nonlinear systems of equations
	1.1.2 Error control and stepsize selection

	1.2 Theoretical investigations
	1.3 Implementation

	2 Part II: Choose one, and only one, of the following problems
	2.1 Event detection and the woodpecker toy problem
	2.2 Differential-algebraic equations and the differentiator circuit

