TMA4220 Numerical solution of partial differential equations by element methods

Einar M. Rønquist

September 8, 2008

Exercise 1. Consider the problem $-u_{x x}=1,0<x<1, u(0)=u(1)=0$.
(a) Derive the exact solution $u=\frac{1}{2} x(1-x)$.
(b) Show by explicit calculation that $\delta J_{v}(u)=\int_{0}^{1}\left(u_{x} v_{x}-v\right) d x=0$ for all (smooth) v such that $v(0)=v(1)=0$.
(c) Compute $J(u)$.
(d) Consider the functions $w_{n}(x)=a_{n} \sin (n \pi x), n=1,2,3, \ldots$. These functions are infinitely differentiable on $x \in[0,1]$, and they all satisfy $w_{n}(0)=w_{n}(1)=0$. Show that $J\left(w_{n}\right)=\frac{a_{n}^{2}}{4}(n \pi)^{2}-\frac{2 a_{n}}{n \pi}$ when $n=1,3,5, \ldots$, i.e., when n is odd.
(e) Consider the case $n=1$. Find the value of the amplitude a_{1} which minimizes $J\left(w_{1}\right)$. How does this value of the amplitude of a_{1} compare with the maximum (or "amplitude") of the exact solution u ?
(f) With the value of the amplitude a_{1} computed in (e), show that $J\left(w_{1}\right)>J(u)$. Is there a big difference between these minima?
(g) If we define \hat{w} as $\hat{w}(x)=a_{1} \sin (\pi x)+a_{3} \sin (3 \pi x)$, is the statement statement $J(u)<\min _{a_{1}, a_{3}} J(\hat{w})<\min _{a_{1}} J\left(w_{1}\right)$ true or false? Explain your answer (hint: you should not have to do any explicit computation of $J(\hat{w})$).

