TMA4220 Numerical solution of partial differential equations by element methods Problem set 8

Einar M. Rønquist

September 8, 2008

Exercise 1. We consider the one-dimensional, steady convection-diffusion problem

$$
\begin{align*}
-\kappa u_{x x}+U u_{x} & =f \quad \text { in } \Omega=(0,1), \tag{1}\\
u(0) & =0, \tag{2}\\
u(1) & =1 . \tag{3}
\end{align*}
$$

Assume that we solve this problem using linear finite elements. The element matrix \underline{A}_{h}^{k} associated with element k can be expressed as

$$
\underline{A}_{h}^{k}=\frac{\kappa}{h^{k}}\left(\begin{array}{rr}
1 & -1 \tag{4}\\
-1 & 1
\end{array}\right)+\frac{U}{2}\left(\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right) .
$$

Here, h^{k} is the length of element $T_{h}^{k}, k=1, \ldots, K$. Derive this element matrix. Hint: complete the discussion in the notes dated March 9, 2004.

Exercise 2. Consider the model problem discussed in class:

$$
\begin{align*}
-\kappa u_{x x}-U u_{x} & =0 \quad \text { in } \Omega=(0, \infty), \tag{5}\\
u(0) & =1 \tag{6}\\
u(\infty) & =0 \tag{7}
\end{align*}
$$

Assume that we discretize both the diffusion term and the convection term using second-order central differences. For what grid Peclet numbers do we get oscillations in the sense that the numerical solution will become both positive and negative? Hint: just inspect the exact form of the numerical solution.

Exercise 3. Again, consider the model problem in Exercise 2. Show that first-order upwinding is equivalent to center differences applied to an equation in which the parameter $\varepsilon=\kappa / U$ is replaced by $\varepsilon+\Delta x / 2$. What is the maximum grid Peclet number using first-order upwinding?

