
Cooking beef - and other applications of FEM in the kitchen
Programming project in TMA4220

by Kjetil André Johannessen and Trond Kvamsdal
TMA4220 - Numerical solution of partial differential equations using the finite element method

1 Gaussian quadrature

At the heart of every finite element code, lies the evaluation of an integral. This integral may be of
varying complexity depending on the problem at hand, and many of these integrals does not even
have a known analytical solution. Some integrals are possible to solve analytically, but of such
computational complexity that it is impractical to do so. As such, one often refers to numerical
integration schemes to do the core integration. One popular integration scheme is the Gaussian
quadrature.

In one dimension the gauss quadrature takes the form

∫ 1

−1
g(z)dz ≈

Nq∑
q=1

ρqg(zq),

where Nq is the number of integration points, zq are the Gaussian quadrature points and ρq are the
associated Gaussian weights.

This extends to higher dimensions by

∫
Ω̂
g(z)dz ≈

Nq∑
q=1

ρqg(zq),

and specifying the vector quadrature points zq as well as integrating over a suitable reference
domain Ω̂ (i.e. squares or triangles in 2D, tetrahedra or cubes in 3D).

a) 1D quadrature

Write a matlab function I = quadrature1D(a,b,Nq,g). With the following arguments:

I ∈ R value of the integral
a ∈ R integration start
b ∈ R integration end
Nq ∈ [1, 4] number of integration points
g : R→ R function pointer∗

verify that the function evaluates correctly by comparing with the analytical solution of the integral

∫ 2

1
ex dx

Nq zq ρq
1-point-rule 0 2
2-point-rule −

√
1/3 1√

1/3 1
−
√

3/5 5/9
3-point-rule 0 8/9√

3/5 5/9

−
√

3+2
√

6/5

7
18−
√

30
36

4-point-rule −
√

3−2
√

6/5

7
18+
√

30
36√

3−2
√

6/5

7
18+
√

30
36√

3+2
√

6/5

7
18−
√

30
36

Table 1: 1D gauss quadrature

b) 2D quadrature

Using all numerical quadratures, it is important to first map the function to the referance domain. In
one dimension, this is the interval ζ ∈ [−1, 1]. In higher dimensions, we often map to barycentric
coordinates (or area coordinates as they are known in 2D). The gauss points are then given as
triplets in this coordinate system. The area coordinates are defined by

ζ1 =
A1

A

ζ2 =
A2

A

ζ3 =
A3

A

where A1, A2 and A3 are the area of the triangles depicted in figure 1 and A is the total area of the
triangle. Note that these do not form a linear independent basis as ζ1 + ζ2 + ζ3 = 1.

Nq (ζ1, ζ2, ζ3) ρ

1-point rule (1/3, 1/3, 1/3) 1
(1/2, 1/2, 0) 1/3

3-point rule (1/2, 0, 1/2) 1/3
(0, 1/2, 1/2) 1/3

(1/3, 1/3, 1/3) -9/16
4-point rule (3/5, 1/5, 1/5) 25/48

(1/5, 3/5, 1/5) 25/48
(1/5, 1/5, 3/5) 25/48

Table 2: 2D gauss quadrature

Write a matlab function I = quadrature2D(p1,p2,p3,Nq,g). With the following argu-
ments:

Figure 1: Barycentric coordinates in two dimensions

I ∈ R value of the integral
p1 ∈ R2 first corner point of the triangle
p2 ∈ R2 second corner point of the triangle
p3 ∈ R2 third corner point of the triangle
Nq ∈ {1, 3, 4} number of integration points
g : R2 → R function pointer∗

verify that the function evaluates correctly by comparing with the analytical solution of the integral∫∫
Ω

log(x+ y) dx dy,

where Ω is the triangle defined by the corner points (1, 0), (3, 1) and (3, 2).

c) 3D quadrature

The extension of the barycentric coordinates to 3dimensions and tetrahedral elements, should be
straightforward. The integration schemes can be found in the following table

Write a matlab function I = quadrature3D(p1,p2,p3,p4,Nq,g). With the following
arguments:

Nq (ζ1, ζ2, ζ3, ζ4) ρ

1-point rule (1/4, 1/4, 1/4, 1/4) 1
(0.5854102, 0.1381966, 0.1381966, 0.1381966) 0.25

4-point rule (0.1381966, 0.5854102, 0.1381966, 0.1381966) 0.25
(0.1381966, 0.1381966, 0.5854102, 0.1381966) 0.25
(0.1381966, 0.1381966, 0.1381966, 0.5854102) 0.25

(1/4, 1/4, 1/4, 1/4) -4/5
(1/2, 1/6, 1/6, 1/6) 9/20

5-point rule (1/6, 1/2, 1/6, 1/6) 9/20
(1/6, 1/6, 1/2, 1/6) 9/20
(1/6, 1/6, 1/6, 1/2) 9/20

Table 3: 3D gauss quadrature

I ∈ R value of the integral
p1 ∈ R3 first corner point of the tetrahedron
p2 ∈ R3 second corner point of the tetrahedron
p3 ∈ R3 third corner point of the tetrahedron
p4 ∈ R3 fourth corner point of the tetrahedron
Nq ∈ {1, 4, 5} number of integration points
g : R3 → R function pointer∗

verify that the function evaluates correctly by comparing with the analytical solution of the integral∫∫∫
Ω

ex dx dy dz,

where Ω is the tetrahedron defined by the corner points (0, 0, 0), (0, 2, 0), (0, 0, 2) and (2, 0, 0).

(*) A function pointer in matlab is a variable which represents a function instead of the usual
numerical values. In its simplest form it is declared as

f = @(x) xˆ2 + 1

which would cause the variable f to contain a pointer to the function f(x) = x2 +1. The function
can then be evaluated using one of two methods

y = f(4);
y = feval(f,4);

both of which should yield the same result y = 17. A function may take in several arguments,
i.e. f(x, y) = x2 + y2 may be declared as

f = @(x,y) xˆ2 + yˆ2

again the evaluation of the function is straightforward

y = f(2,2);
y = feval(f,2,2);

Provided that the actual function body is capable of vector or matrix operations, then the input
arguments may be of vector or matrix form. The syntax remains unchanged by this. You may also
use variables in the function declaration, i.e.

a = 2;
f = @(x) x*a

will result in a function f which is doubling its input argument (even if a is changed at a later
point).

2 Poisson in 2 dimensions

We are going to solve the two-dimensional Poisson problem, given by

∇2u(x, y) = −f(x, y) (1)

u(x, y)|r=1 = 0,

with f given in polar coordinates as

f(r, θ) = −8π cos
(
2πr2

)
+ 16π2r2 sin

(
2πr2

)
on the domain Ω given by the unit disk, i.e. Ω =

{
(x, y) : x2 + y2 ≤ 1

}
.

a) Analytical solution

Verify that the following expression is in fact a solution to the problem (1)

u(x, y) = sin
(
2π(x2 + y2)

)
. (2)

b) Weak formulation

Show that the problem can be rewritten as

a(u, v) = l(v), ∀v ∈ X.

with the bilinear functional a and the linear functional l given by

a(u, v) =

∫∫
Ω

∇u · ∇v dx dy,

l(v) =

∫∫
Ω

fv dx dy.

What is the definition of the space X?

c) Galerkin projection

Instead of searching for a solution u in the entire space X we are going to be looking for a
solution in a much smaller space Xh ⊂ X . Let Ω be discretized into K triangles such that our
computational domain is the union of all of these Ω = ∪Kk=1T

k
h . Each triangle T k

h is then defined
by its three corner nodes xi. For each of these nodes there corresponds one basis function. The
space Xh is then defined by

Xh =
{
v ∈ X : v|Tk

h
∈ P1(T k

h), 1 ≤ k ≤ K
}

for which the basis functions {ϕi}ni=1 satisfy

Xh = span{ϕi}ni=1 ϕj(xi) = δij (3)

and δij is the Kronecker delta. By searching for a solution uh ∈ Xh, it is then possible to write
this as a weighted sum of the basis functions, i.e. uh =

∑n
i=1 u

i
hϕi(x, y).

Show that the problem ”Find uh ∈ Xh such that a(uh, v) = l(v) ∀v ∈ Xh” is equivalent to the
following problem

Find u such that
Au = f (4)

with

A = [Aij] = [a(ϕi, ϕj)]

u = [uih]

f = [fi] = [l(ϕi)].

d) Implementation

We are now going to actually solve the system (4). First we are going to take a look at the triangula-
tion {T k

h }. From the webpage http://www.math.ntnu.no/emner/tma4220/2010h/
you may download the mesh generators. For organization purposes you might want to keep them
in a separate directory and see the matlab addpath command.

The function getDisk is generating the unit disk Ω. Plot at least three meshes of different
sizes using the mesh generated from this function. You may want to check the matlab function
trimesh or triplot.

e) Stiffness matrix

Build the stiffness matrix A. You may choose if you perform the integration analytically or by
Gaussian quadrature.

The matrix A should now be singular. Verify this in your code and explain why this is the case.

f) Right hand side

Build the right hand side vector f in the same manner as A. Here you might need to resort to
Gaussian quadrature.

g) Boundary conditions

Implement the homogeneous dirichlet boundary conditions. Describe what method you used for
this and how you did it.

h) Verification

Solve the system (4) and verify that you are getting (approximately) the same result as the analyt-
ical solution (2).

3 Cooking beef

Figure 2: The beef which is to be studied

a) The Poisson in 3d

We are now going to solve the problem

∇2u = f (5)

u|∂Ω = 0

in three dimensions, meaning that we are looking for a solution u(x, y, z).

Generate a mesh, using the function getBeef from the downloaded mesh generators. This will
give you three variables which will describe the nodal points, the tetrahedral elements and the
index of the boundary nodes. These should be familiar from task 2 as the only difference is that
spatial coordinates have one more component, as well as the elements require one more index
to describe. Note that the function getBeef takes three input arguments. This is since the beef
is stored as a parametric volume described by three parametric variables (ξ1, ξ2, ξ3). You will be
asked to specify the tessellation in each of these directions separately, see figure 3 for details.

Modify your code from task 2 to deal with tetrahedral elements in three dimensions. Use the
following f

f(x, y, z) =
1

x2 + y2 + z2

and homogeneous Dirichlet boundary conditions (uD = 0).

Figure 3: Computational domain Ω

b) Volume visualization

Plot the domain Ω (i.e. the beef). Note that you will not be required to plot every element, as most
will be hidden on the inside of the domain. See the matlab function TriRep for functionality
relating to this.

Plot your solution using isosurfaces. Note that the matlab function isosurface requires your
data to be structured, which it currently is not. You will have to post process the data to get it on
the desired form. Read up on TriScatteredInterp for this.

You are by no means limited to the above functions for plotting. Feel free to experiment using
different techniques or functions.

c) The heat equation

The heat equation reads

∂u

∂t
= α∇2u

u(t, x, y, z)|∂Ω = uD (6)

u(t, x, y, z)|t=0 = u0(x, y, z)

where α is an positive constant defined by

α =
κ

cpρ

with κ∗∗ being the thermal conductivity, ρ∗∗ the mass density and c∗∗p the specific heat capacity of
the material.

We are going to semidiscretize the system by projecting the spatial variables to a finite element
subspace Xh. Multiply (6) by a test function v and integrate over the domain Ω to get

∫∫∫
Ω

∂u

∂t
v dV =

∫∫∫
Ω

α∇u∇v dV

Note that we have only semidiscretized the system, and as such our unknown u is given as a linear
combination of the spatial basis functions, and continuous in time, i.e.

uh(x, y, z, t) =

n∑
i=1

uih(t)ϕi(x, y, z).

The variational form of the problem then reads: Find uh ∈ XD
h such that∫∫∫

Ω

∂u
∂t v dV =

∫∫∫
Ω

α∇u∇v dV, ∀v ∈ Xh

⇒
∑
i

∫∫∫
Ω

ϕiϕjdV
∂ui

h
∂t =

∑
i

∫∫∫
Ω

α∇ϕi∇ϕjdV u
i
h ∀j

which in turn can be written as the linear system

M
∂u

∂t
(t) = Au(t) (7)

which is an ordinary differential equation (ODE) with the matrices defined as

A = [Aij] =

∫∫∫
Ω

α∇ϕi∇ϕj dV

M = [Mij] =

∫∫∫
Ω

ϕiϕj dV.

Construct the matrix A and M as defined above.

d) Time integration

The system (7) is an ODE, which should be familiar from previous courses. Very briefly an ODE
is an equation on the form

∂y

∂t
= f(t, y)

where y may be a vector. The simplest ODE solver available is Eulers method

yn+1 = yn + hf(tn, yn).

More sophisticated include the improved eulers methods

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn + hf(tn, yn)))

or the implicit trapezoid rule

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1))

and the famous Runge Kutta methods.

Choose an ODE scheme (based on your previous experience and expertize) and implement your
time integration. Why did you choose the solver you did?

e) Experimentation

The boundary conditions are the physical variables which we have control over. The initial condi-
tion u(t, x, y, z)|t=0 is the beef as it is prior to any cooking. A proper choice here would be room
temperature, say 20◦C.

The actual cooking will be a product of the dirichlet boundary conditions. Frying the beef on a
pan will result in a high (how high?) temperature on the bottom and room temperature on the other
sides of the beef. What should be done to turn the beef and fry the other side? When should we
turn it? Cooking it in an oven would result in a uniform boundary conditions on all sides of say
225◦C. How long will it have to stay in? Is it a good idea to keep it in room temperature after
cooking (and how does this change the boundary conditions)? More exotic cooking techniques
include wrapping it in plastic and putting it in a water bath (not boiling) for some time, and only
frying it on a pan for seconds prior to serving.

Experiment around by cooking it in a number of ways using different boundary conditions. The
optimality criterion is left up to the student. How well is your optimal beef cooked?

(**) Physical proprties of meat

It is hard to generalize too much on the physical properties of the beef as they are dependant on
a number of variables outside the scope of this task. Not only are they dependant on the meat
composition (i.e. what primal cut it is derived from), but it is also dependant on the temperature.
Try and find good approximations for these numbers. A start may be the work of Pan and Singh
(”Physical and Thermal Properties of Ground Beef During Cooking”) which suggests that the
density ρ is in the range 1.006 to 1.033 g/cm3 and the thermal conductivity κ in the range 0.35 to
0.41 W/m·K. The specific heat capacity is not mentioned in the abstract, but may be commented
on in the actual article for those that get their hands on the entire document.

Unconfirmed sources list the specific heat capacity cp of meat as 3.973 J/kg·K. You may use these
values, or better yet: find more reliable, documented values.

