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1 The finite element method

As a model problem, consider the Poisson problem in a domain € with homo-
geneous Dirichlet boundary conditions,

-V = f in €, (1)
u = 0 on 0. (2)

The corresponding weak formulation is: Find v € X = Hg () such that
a(u,v) =1l(v) YveX. (3)

Here, a(w,v) is the symmetric, positive definite bilinear form
a{w,v) = / Vu - Vodil, (4)
Q
and {(v) is the bounded linear form
() = / fodo . (5)
Q
The Poisson problem can also be stated in terms of the minimization problem
. 1
u = arg min J(w) = §a(w, w) — Hw) . (6)

Since af(-, ) is symmetric, positive definite, the quadratic functional J(w) has a
minimum; this minimum can be found by requiring that the first variation of
J(w) vanish, which results in the weak statement (3).

The finite element formulation of the Poisson problem consists of searching
for an approximate solution wuy in a finite-dimensional (conforming) subspace
Xp of X, ie, up € X5, € X. The space X can be defined in terms of linear
finite elements, or in terms of higher-order finite elements or spectral elements:
the total number of degrees-of-freedom is assumed to be N, i.e., dim(X,) = N.

The discrete problem can then be stated as: Find up, € X}, such that

alun,v) =lv) YvelX, )

while the corresponding minimization problem can be stated as

. 1
un = arg min J(w) = ia(w,w) —lw) . (8)

Choosing a nodal basis for Xj, i.e., setting

Xn = span{é1, ¢2,...ON} , )
N

un(z) = Y widi(z) , G =0y (10)
=1



we arrive at a set of algebraic equations of the form

where
Ay = al¢i, 95) » (12)
Fro= Ui, (13)

and u? = [ug, ug, ...,uN]T are the nodal values of uy. Here, A is a symmetric,
positive definite matrix of dimension N.
Finally, by using the chosen nodal basis for X, we also note that the alge-

braic system of equations, (11), corresponds to the minimization problem

wAw—-w'F. (14)

1
u=arg min JY(w) =3

In particular, (11) corresponds to setting the first variation of JV (w) equal to
zero. Note that JV(w) : RN — R is the same as J(wy) : X» — R since
JN(w) = J (Z?]xl w;$;); the only difference here is that JV expresses the
quadratic functional in terms of the basis coefficients, while J expresses it in
terms of functions in X,

Once we have computed u, we obtain uy, by using the chosen nodal basis (10).

2 The conjugate gradient method

2.1 Preliminaries

We will now explain how the conjugate gradient method works in the context
of solving (11). Consider a subspace K™ of R" spanned by a set of n linearly
independent vectors PPy D that is

K" = span{g_)l,gz, ....,1_)"} . (15)

Define the N x n matrix P as

P= @1,22,....,£n] . (16)
With this notation, we can write any element w € K™ as
w=Pz (17)

for some z € R™ since the columns of P represent a basis for K.

We know that the solution of our system of equations Au = F can be found
my minimizing the quadratic functional JV (w) over all w € RY. However, if we
limit our minimization to elements in K™ < RY, this corresponds to minimizing



JN(w) only over elements w that can be expressed in the form (17). Hence, the
problem: Find u,, € K™ such that

in JY(w) (18)

U, = arg m
n gyeKn

can be restated as: Find u,, = Pa € K™ where

__ . N
a=arg min TN (w(z)) (19)
and )
TV(w() = J"(2) = 52" P"APz ~ "P'F (20)

Similar to the original problem (14), the solution to (19)-(20) is found by re-
quiring that the first variation of J"(z) is equal to zero, that is,

P'APa=P"F . (21)

In order to proceed, let us now further assume that the vectors {p,} are
A-orthogonal (or conjugate) in the sense that

piAp, = 0, i#7, (22)

=, = ]
This A-orthogonality (or conjugacy) can also be expressed succinctly as
PTAP=D= diag(my, T2y ooy Tn) (23)

Note that D is a diagonal, symmetric, positive definite, n x n matrix.
By substituting (23) into (20), equation (19) can be expressed as

1
a = arg ES}% JM(z) = §.Z_T_Q_Z. - Z'P'F, (24)

and (21) simply becomes

I

a=P'F . (25)

We now notice that, unlike the original problem, solving for g is trivial since D
is diagonal; we simply get

a=D"'"PTF=D"'PTAu (26)

where we have replaced F with Au. Componentwise, we get

T
p.Au Vi .
i = =-— Li=1,..,n,
a pTAp, i n 27)
where we have used (22) and defined
Yi = Q-T_A.y. . (28)
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Having found g in (19), the corresponding solution u,, € K™ is
n
u,=Pa=> ap, . (29)
i1

In the particular case when n = N, the basis vectors in K" span RY, and
the minimization problem (14) and (18) coincide; the exact basis coefficients u
can thus be expressed as

N
U=y = ap,. (30)
i=1
Since the A-norm of u is given by || u [[3=u"Au (= a(un,us) ), we get
N /\/2
2_ T p, _ i
lula=u"Au= ; = (31)

The difference between the exact solution v € RV and u,, € K™ is
N n N
ESU—Uy =) WP, =Y Gp = > 4P (32)
i=1 =1 i=nt1

We have thus shown that the error u — u,, is in span{p ...,QN}. Using the

Eni1?
A-orthogonality (22) of the basis vectors, we immediately obtain
la—u, 5= D afm= ) * (33)
d=n4-1 i=n+41 °
and
(u—u,)"Av=0 YoeK". (34)

Hence, u,, represents an A-orthogonal projection of the exact solution u € RY
onto the subspace K™, and the error is A-orthogonal to this space. It also
follows that the error

lu—w, la<lu—-via VeeK™ (35)

Note that the coefficients g can simply be regarded as generalized Fourier coef-
ficients; in particular, (31) is the analogue of Parseval’s formula for functions.

We now make some comments on the orthogonality condition (34) and the
optimality (projection) condition (35). As long as the basis vectors {p,} are
linearly independent, K™ will be a larger space than K™~!, and the error || g,, || a
will decrease as we increase dim(K™) = n. Note that we have tacitly assumed
that we can easily construct an expanding set of A-orthogonal basis vectors;
the conjugate gradient method is able to meet this objective. Armed with a
set of conjugate search directions, the sequence u,,, n = 0,1, .. will represent a
sequence of improved approximations to the exact solution u of (11).



Since KN = RN , the exact solution v will be obtained in no more than N
iterations (in exact arithmetic). In this respect, the conjugate gradient method
can also be regarded as a direct method. In fact, this is how the method was first
considered. However, what makes the conjugate gradient method attractive in
practice is that an acceptable iterate u,, can often be achieved for n < N.

The importance of generating an A-orthogonal basis is due to the fact that
the global minimization problem (18) can be made into a series of sequential (or
local) minimization problems along each of the basis vectors. Specifically, if we
know u,,_, the next approximation u,, will automatically be of the form

Uy = Uy -+ (479 Z_)n . (36)

Hence, in (36) we just need to find the value of the new coefficient a, which
minimizes the quadratic functional J” along p,; see Exercise 3. Again, note
that this is true only if we have access to an A-orthogonal basis, because the
optimal value a, can then be computed independently of a;,41 = 1,...,n — 1
via (26).

Note that the error || e,, ||4> 0 as long as K™ does not span the entire space
RV . However, if the solution » happens to belong to a subspace of R, and
K™ spans this subspace for some n < N, then || g, ||4= 0 from the optimality
condition (35). That is, we obtain the exact solution in less than N iterations
(assuming exact arithmetic).

We summarize some of the key points:

U = argzruneiglf J(w) = %a(w,w) —l(w) weX=HN) (37)

up = arg min J(w) up € Xp, ¢ X (38)
wp€Xp
1
u = arg min J Mw) = §_wTAw ~w'F ueRN (39)
U, = argwrg}?n TN (w) u, € K" c RN (40)

The conjugate gradient method is characterized by the minimization state-
ment (40), and where u,, is easy to obtain if K™ is spanned by n linearly in-
dependent vectors which are conjugate. In the context of the finite element
method, the minimization statement (39) is equivalent to the minimization
statement (38) via the chosen nodal basis for X}. Furthermore, we note that
the discrete solution u, only represents a minimization of J(w) over X} and
not over the entire space X. Hence, in the finite element context, the conjugate
gradient method represents a minimization within a minimization. For many
finite element applications, it thus suffices to iterate only until the incomplete
iteration error || u —w,, |4 is at the level of the discretization error | u —up |g1.



2.2 Bases for K"

What remains now is to find a computationally efficient way to construct the
subspace K. One way would, of course, be to find a set of n linearly inde-
pendent vectors and to A-orthogonalize these via a Gram-Schmidt procedure.
However, this would be a very expensive method, both in terms of computa-
tional effort and in terms of memory requirement. As we will discuss shortly,
the remarkable fact is that going from K"~ ! to K™ can be achieved without
storing all the previous search directions; simple recurrence relations will suffice.
In practice, the way we span the space K™ is by first starting with the initial
residual ry,. Without any loss of generality, we will assume that the initial guess
U = 0 so that ry = F. The alternative is to set 1y = F — Aug, however, we can
always absorb the term —Aw, into the known right hand side for our system.
Starting with the initial residual r,;, we generate a sequence of vectors

o, A T.OaAQ_tO? ..... , that is, we generate the next member of the sequence by
operating upon the previous vector by the matrix A. The subspace K™ is then
K™ = span{rg, Ary, .., A" 'ro} = K™(4;1p)- (41)

A space generated in this fashion is called a Krylov space, and is denoted as
K™(A;rg) in order to indicate that the "seed” vector is 1y, and the matrix A
is used as a "generator” for the basis vectors. It is obviously a convenient way
to generate K™ since 1, is a known vector, and only matrix-vector products
(operator evaluations) with the known (and sparse) matrix A4 are required. We
will show that, as long as the residual r,,_; = £ — Aw,_; # 0, the vectors
To, ATg, ....A"_lﬁo are indeed linearly independent, and hence K™ is a larger
space than K™~ ( K™ ! is a subspace of K™).

The basis for K™ given in (41) is not A-orthogonal. We thus need to find
an efficient way to generate an alternative basis for K™ that is A-orthogonal.
Before we give the details on how to do this, we consider yet another basis for
K™. To this end, consider the residual r™ where

(42)

By construction, since u,, € K™, Au, € K. Also, by construction, 1, €

7L
K™+ Hence

r, € Kmt (43)
Now, consider the orthogonality condition (34).
Vvee K™, 0 = vTAu-u,) (44)
= v"(Au—-Au,)
= o"(E-Au,)
= 2'r,

Since r,, € K™!, we can choose v to be rg,7y,...,1,,; in (44). Thus, we have
demonstrated that the residuals are mutually orthogonal, i.e.,

e, = 0 Li#j (45)
= p; =]



Aslong asr, ; # 0, {rg,r1, ...,y } form an orthogonal basis for K™, and
dim(K™) = n. This also demonstrates that the vectors {ry, Ary, ..,A""lzo}
in (41) really form a set of linearly independent basis vectors. Finally, we know
that there exists an A-orthogonal basis for K™, and we thus see that

K" = span{zO,Ar_Oa...‘,A_"”lr_o} (46)

span{-T—'O?-f':l? “'7.7.:77,—1}

= span{p,,p,, P, }

2.3 Derivation of the algorithm

We are now ready to derive all the details of the conjugate gradient algorithm.
Let M be the smallest integer such that r,, #* 0 (note that M < N). For each
n < M, we express

n-—1
p, = bir,€K" (47)
=0
and .
_u_n:ZajngK" . (48)
j=1

We choose {r;},j = 0,..,n — 1 as a basis for p,, since the residual vectors
are mutually orthogonal and r,,_, € K™. This ensures that p € K" which
is needed for the next iteration. We have earlier found that the coefficients g
are given by a; = v;/m;, ¢ = 1,...,n. Since the residual vectors are mutually
orthogonal, it also follows that (standard Euclidean projection)

P, .
b; = =0, 1 (49)

But
plry=pl Au=9y, ,i=0,.,n—1 (50)

which implies that b; = +,,/p;. Hence,

n—1 1
P, = V'rzz —1I (51)
=0 Pj
w, = > tp (52)
j=1 "7

We can choose the length of the search directions p, arbitrarily; see Exercise 4.
A convenient choice is ,, = p,_1. With this choice we have
Z_?n ppend l”_n_l + ﬁn?—n——l (53)

Uy = Upoq+anp (54)



where

o, = pn——l/ﬂn (55)
Bn = pn—l/pn—Z (56)
pn = 11, (57)
T, = plAp (58)
Since
Ip=Tnp1—0nAp , (59)

we can also compute the residuals recursively. To start the whole procedure, we
set

P, =Ly - (60)

2.4 The conjugate gradient algorithm

QO - Qv £0 = _Ev

Fork=1,2,
Be = ThaTh 1/Th ol o (B1=0) (61)
P, = Tro1t0eD,_, (p, = 10) (62)
ar = T Le1/DLAD, (63)
U = U q+Orp, (64)
Ty = L1 —okAp, . (65)

End for

2.5 Computational complexity

Based on the above algorithm, we can estimate the computational complexity.
First, for each iteration, we identify the following basic types of operations:

(a) one matrix-vector product of the type y = Ax;
(b) two innerproducts (which ones?);
(¢) multiplication of a vector with a scalar (how many?);

(d) addition of two vectors (how many?)



For a full matrix A, the computational complexity associated with (a) is
O(N?). However, in the context of finite elements, the matrix A is typically
sparse. For example, if we use finite elements of order p, the number of non-
zero entries per row will (in general) be O(p?) in R?* (why?). The operation
count for (a) is thus O(p? N). For linear finite elements, p = 1, and the cost per
iteration scales as O(N).

The computational complexity associated with (b), (¢) and (d) are all O(N)
operations. The total work per iteration is therefore dominated by the O(p? N)
term associated with the matrix-vector product evaluation (except when p = 1).

Note that, in addition to the listed operations (a)-(d), there is also a cost
associated with checking for convergence.

Finally, the total cost of using the conjugate gradient method is equal to the
cost per iteration times the number of iterations, m; the latter is determined by
the convergence property of the conjugate gradient algorithm which we consider
next.

2.6 Convergence rate

Since K™ = span{ry, Arg,..., A" 'r,}, we can express any element v € K™ as
n—1

Q:Z Aty . (66)
§=0

Since we assume that u, = 0 (with no loss in generality), we can express the
initial residual as

ro=F=Au (67)
and thus A
v = Z ¢ A(J+1)u ] (68)
J
Hence,
lu—vlla = Ju=) A" ujq4 (69)

J

L= e A ) ula

= lIpn(d)ulla

i

where p,(z) is a polynomial of degree n such that p,(0) = 1.
Combining this result with the optimality (projection) condition (35) gives

lu=, o= _min  lpa(A)u s (70)

Since A is an SPD matrix, A has a complete set of N orthogonal eigenvectors 4
with corresponding eigenvalues A;. We can expand the exact solution in terms

10



of the eigenvectors
u=y djg
7

where d; are the expansion coefficients. It now follows that

paAu = Y dipa(4)g
= Zdjpn(/\j)g_j
< [max pa() Zdyq

T —

Thus (70) becomes

pepiin o Ien(d)ulla

i

lw—u, lla

IA

mi s
poepmin o max ()] lla

< min ma A
e [Pr(M)] T wlla

This is a classical min-max problem with the solution

a2 u s

where kK = K(A) = Amaz(A)/Amin(A4) is the condition number of 4.
We can also express this result as

Vi Ly e
\/E—I—

| n lla< 2( € lla

(73)

(74)

(75)

Hence, the initial error in the A-norm in reduced by a factor of ( WS Ly, If

is close to unity, we expect the conjugate gradient method to converge in O(1)
iterations. In the general case, we expect the method to converge in m = O(y/k)
iterations, but limited to a maximum of N iterations (in exact arithmetic).

3 Omne-dimensional linear finite elements

Consider the one-dimensional Poisson equation —ug,, = f in Q = (0,1) with
u(0) = u(l) = 0. Let us construct a test case where the exact solution is
u = e®sin(nz). Note that this solution is a non-polynomial solution which
can never be exactly represented by piecewise polynomials. The corresponding
source term f is given as f = —e? sin(n x) — 27 e” cos(w z) + 72 ® sin(r z).

11



We discretize the domain into K = N + 1 linear finite elements with mesh
size h = 1/(N + 1), and arrive at the linear system of equations Au = F, to
be solved for the IV interior nodal values w. In order to evaluate the right hand
side (the linear form [(v) in (7)), we use one-point Gauss Legendre quadrature
on each element. We solve the system of algebraic equations by the conjugate
gradient method. The iteration is stopped when the L2-norm of the residual
vector, (r7r)'/? is less than € = 10~'° (double precision). Table 1 summarizes
the results for various values of K = N + 1.

Table 1: One-dimensional Poisson problem; numerical results.

K N m )\mzn(é) /\max(_A_) K/(_A.) l U — Up iHl H a4—u HA

800 | 799 | 799 | 1.16 1072 | 3.2010° | 2.76 10° 5.501073 1.9410°°

400 | 399 | 399 | 2461072 | 1.6010° | 6.5210% 1.1010™* 7.74107°

200 | 199 | 199 | 4931072 | 8.0010% | 1.6210% | 2.211072 3.1010>

100 | 99 | 99 | 9.87107% | 4.0010? | 4.0510° | 4.421072 1.24107%

Here, m denotes the number of conjugate gradient iterations it takes in order
to reach the specified tolerance, Apin(A4) and Apmez(A) denote the minimum and
maximum eigenvalue of A, respectively, and

K= /‘J(A) = )\maz(A)//\mzn(A) (76)

is the condition number of A. We also compute the error between the analytical
solution and the numerical solution; the semi-norm | u — uy |g1 is computed
using two-point Gauss Legendre quadrature on each element, while the discrete
semi-norm error is || & — u |la= (& — u)T A (& — u))"/?; here & represents the
exact solution u at the interior finite element nodes (the interpolant).

We now comment on the numerical results in Table 1. First, we notice that
m == N, ie., the number of iterations is equal to the number of unknowns if
we want to reduce the residual down to (essentially) machine precision. The
good news is that the conjugate gradient iteration lives up to its promise of not
requiring more than IV iterations (it just made it; in fact, the residual drops sev-
eral orders of magnitude in the very last iteration). This demonstrates the fact
that, in "exact” precision, the conjugate gradient iteration can be regarded as
a direct method (it terminates after a predictable, finite number of operations).
The bad news is that we were hoping for m < N (= Ny).

We also see that the condition number, x(A4), is large, and that it grows like

K~ O(h™2). (77)

Reducing the node spacing h with a factor of two increases x(A4) with a factor
of four.
The discretization error, as measured in the semi-norm, scales as

| w—up g~ O(h), (78)

a result which is consistent with the fact that we are using linear finite elements.
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4 Multi-dimensional linear finite elements

Fortunately, the situation illustrated in the one-dimensional case is not typical,
in particular, for multi-dimensional problems. For example, a tensor-product
extension of the one-dimensional problem to d space dimensions would give
N = N¢ while the condition number, x(A), would only increase with a constant
factor O(d). For example, if d = 3 and Ny = 100, we have N = 10% while
we expect k(A) ~ 10* (which is only a factor of about 3 larger than for the
N = N; = 100 case). In addition, we generally do not need to decrease the
residual to machine precision unless we expect the discretization error to also be
very small, or unless there is some other essential reason for solving the system
to a very high precision. Last, we do not use any form of preconditioning of the
original system Ay = F.

Let us now estimate the total cost Wee of using the conjugate gradient
algorithm to solve the Poisson problem in R%, d = 1,2,3. We assume that we
use a linear finite element mesh (i.e., p = 1) with N = N{ degrees-of-freedom,
Nj in each spatial direction. The number of non-zero entries per row in 4 is
O(1). Hence, the cost per iteration scales as O(N). The number of iterations,
m, scales as m ~ /&K ~ O(h™') ~ O(Ny). Hence, the total cost scales as
WCG = m - O(N) ~ O(Nl) . O(Nf), i~e.,

Weoe = O(NF™) = O(Ny - N). (79)

For example, in R!, we obtain Woe = O(N2) = O(N?), which is consistent with
the earlier one-dimensional example: each iteration requires O(N) operations,
and we needed O(N) iterations.

Let us now compare the estimate (79) with the corresponding cost when
using a direct, banded solver. If we assume that we use a natural ordering of
the unknowns, the bandwidth b will be b = N¢~! in R% The cost of factoring
the banded matrix will dominate the cost of back substitution, and we get the
estimate

Wiy = O - N) = O(N{™)* - N). (80)

For example, in R!, Wyy = O(N), which is much better than the O(N?)
result obtained for the conjugate gradient method. However, as we increase
the number of space dimensions, d, the conjugate gradient method becomes
more and more attractive, something we can clearly see from Table 2 below. In
addition to a more favorable cost estimate, the conjugate gradient method also
scales very well in terms of memory requirement.

Table 2: Comparison of estimated cost for the conjugate gradient method
and banded LU-decomposition in d space dimensions.

d| Wee Wiu
1| NN N

5N, N | N2 N
3TN, N | NI N
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10.
11.
12.
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Exercises

. If A is SPD, show that A™! is also SPD and can be used to define the

norm: ¥y € RN, || y [|a-1= (QTA_IQ)I/Z .

From the derivation of the conjugate gradient algorithm, we know that,
at each iteration, the method minimizes the error in the A-norm over all
elements in K™(A;ry). Show that, at each iteration, the conjugate gradi-
ent method also minimizes the residual in the A~ norm. Hint: Express
the error (35) in terms of the residual.

. Bach update of the solution in the conjugate gradient algorithm can be

expressed as u,, = U, + Qn p, where o = rr r.y /QZA_ p,. Show

that a, is optimal in terms of minimizing the functional J¥ (v) along the

search direction p (line minimization). Hint: Note that (51) implies that

T _ — I
Qnﬁn—l =Tn = Pn—-1 = Ly 1lp1-

- Demonstrate that the length of the search directions {p } can be chosen

arbitrarily. Hint: How does the coefficients {a;} depend upon the length
of the search directions?

. Assume that the initial residual can be expressed as a sum of m eigenvec-

tors with m < N, e, 1y =2, ¢ q, where Agi = \; q; Show that the
conjugate gradient algorithm converges in m iterations.

. Assume that 4 is an N x N matrix which is SPD and has m distinct eigen-

values (m < N). Show that the conjugate gradient algorithm converges
in at most m iterations.

. Prove the optimality (or projection) condition (35).
. Prove (50).
. Prove (59).

What happens if 7 is in the direction of one of the eigenvectors of A?
Answer the questions in (b), (c) and (d) of Section 2.5.

We know that, in one space dimension and with exact quadrature of the
bilinear and linear forms, the finite element solution wy is equal to the
exact solution u at the finite element nodes (i.e., equal to the interpolant
of u). Explain the numerical results in the last column of Table 1.

In the one-dimensional finite element example, does it make sense to it-
erate until the residual (r77)'/2 < 10~1° given the numerical results for
| w — up |z in Table 17

Repeat the comparison in Table 2, but now compare the memory require-
ment in d space dimensions.
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