TMA4220

Numerical solution of partial differential equations by element methods

Suggested solutions to Problem Set 4^1

¹Made by Einar Rønquist, Department of Mathematical Sciences, NTNU, N-7491 Trondheim, Norway.

Exercise 6

(April 2, 2003)

$$X_h = \{ v \in X | v|_{T_h} \in \mathbb{P}_2(T_h), \forall T_h \in \mathcal{T}_h \}$$

Here $X = H_0^1(\Omega)$ (Dirichlet problem)

a)

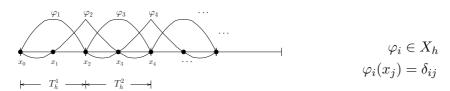
$$v|_{T_h^k} \in \mathbb{P}_2(T_h^k) \Rightarrow v(x)|_{T_h^k} = a_k + b_k x + c_k x^2, \quad k = 1, \dots, K$$

Counting argument:

$$\begin{array}{c} \text{internal} \\ \text{continuity} \\ \text{number of} \\ \text{elements} \end{array} \quad \begin{array}{c} \text{conditions} \\ v \in H^1_0(\Omega) \\ \\ \dim(X_h) = \overbrace{3(n+1)} \\ - 2 \\ - n \end{array} = 2n+1 \\ \text{degrees-of-freedom} \quad \begin{array}{c} \text{boundary} \\ \text{associated with} \\ \text{a polynomial of} \\ \text{degree 2} \end{array}$$

 $\dim(X_h) = 2n + 1.$

b)



c)

Matrix structure (using a natural ordering):

Five diagonals with non-zero elements. (Recall that <u>linear</u> elements resulted in A_h being tridiagonal).

Variable bandwidth due to different kinds of basis functions.

We will return to this exercise later in the course.

Exercise 7

(April 2, 2003)

$$u_{xxxx} = f$$
 in $\Omega = (0, 1)$

From Exercise 7 & 11 of Problem set 2, we concluded:

$$u \in H^2(\Omega) \Rightarrow u \in C^1(\Omega)$$

 $\Rightarrow u \text{ is continuous}$
 $u_x \text{ is continuous}$

If

$$u_h \in X_h \subset H^2(\Omega) \Rightarrow u_h \text{ is continuous}$$

 $(u_h)_x \text{ is continuous}$

Consider linear elements:

$$x=0$$

$$T_h^1 \qquad T_h^2 \qquad \dots \qquad T_h^K \qquad X=1$$

$$x_0 \qquad x_1 \qquad x_2 \qquad \dots \qquad x_n \qquad x_{n+1}$$

If $u_h|_{T_h^k} \in \mathbb{P}_1(T_h^k) \Rightarrow u_h|_{T_h^k} = a_k + b_k x$. Let m be the number of <u>essential</u> b.c.'s. Then, the number of degrees-of-freedom is:

$$N = 2(n+1) - m - 2n = 2 - m.$$

In Exercise 7 (Problem set 2), $m = 4 \implies N = -2$. In Exercise 11 (Problem set 2), $m = 2 \implies N = 0$.

<u>Conclusion</u>: If we insist that $u_h \in X_h \subset X$ (i.e., conforming approximation), we cannot use linear elements. With linear elements, we do not have any degrees-of-freedom left to approximate the solution.

Exercise 8

(April 2, 2003)

$$-u_{xx} + \gamma^2 u = f \text{ in } \Omega = (0, 1)$$

 $u(0) = u(1) = 0$

a)

$$\int_0^1 (-u_{xx} + \gamma^2 u)v \, dx = \int_0^1 fv \, dx \qquad \forall v \in X$$

$$\Rightarrow \int_0^1 (u_x v_x + \gamma^2 uv) \, dx = \int_0^1 fv \, dx \qquad \forall v \in X$$

Weak form: Find $u \in X$ such that

$$a(u, v) = l(v) \qquad \forall v \in X$$

where

$$a(w,v) = \int_0^1 (w_x v_x + \gamma^2 wv) dx$$
$$l(v) = \int_0^1 fv dx$$

$$\underline{\text{SPD}} \begin{cases} a(w, v) = a(v, w) \\ a(w, w) = \int_0^1 (w_x^2 + \gamma^2 w^2) \, \mathrm{d}x > 0 & \forall w \in X \\ w \neq 0 \end{cases}$$

$$X = \{v \in H^1(\Omega) | v(0) = v(1) = 0\}$$

$$J(w) = \frac{1}{2}a(w, w) - l(w)$$

$$u = \arg\min_{w \in X} J(w) \quad \text{-minimization statement}$$

b)

Discrete problem: Find $u_h \in X_h \subset X$ such that

$$a(u_h, v) = l(v) \qquad \forall v \in X_h$$

Let $X_h = \operatorname{span}\{\varphi_1, \varphi_2, \dots, \varphi_n\}$ be a nodal basis.

$$\Rightarrow u_h = \sum_{j=1}^n u_{h_j} \varphi_j(x)$$
$$v = \sum_{j=1}^n \varphi_j(x) \qquad \forall v \in X_h$$

The discrete problem then becomes: Find $\underline{u}_h \in \mathbb{R}^n$ such that

$$a(\sum_{j=1}^{n} u_{h_{j}} \varphi_{j}, \sum_{i=1}^{n} v_{i} \varphi_{i}) = l(\sum_{i=1}^{n} v_{i} \varphi_{i}) \qquad \underline{v} \in \mathbb{R}^{n}$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} v_{i} a(\varphi_{i}, \varphi_{j}) u_{h_{j}} = \sum_{i=1}^{n} v_{i} l(\varphi_{i})$$

$$\rightarrow \underline{A}_{h} \underline{u}_{h} = \underline{F}_{h}$$

where

$$A_{h_{ij}} = a(\varphi_i, \varphi_j) = \underbrace{\int_0^1 \frac{\mathrm{d}\varphi_i}{\mathrm{d}x} \frac{\mathrm{d}\varphi_j}{\mathrm{d}x}}_{A_{h_{ij}}^{\text{Laplacian}}} + \underbrace{\gamma^2 \int_0^1 \varphi_i \varphi_j \, \mathrm{d}x}_{M_{h_{ij}}}$$

Hence:

$$\underline{A}_h \equiv \underline{A}_h^{\rm Helmholtz} = \underline{A}_h^{\rm Laplacian} + \gamma^2 \underline{M}_h$$

Exercise 9

(April 2, 2003)

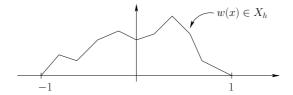
a)

$$w(x) = \sum_{i=1}^{n} w_i \chi_i(x)$$

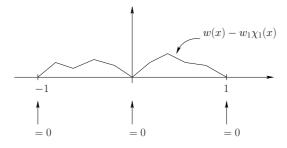
$$X_h = \{ v \in X = H_0^1(\Omega) | v|_{T_h^k} \in \mathbb{P}_1(T_h^k), k = 1, \dots, K \}$$

By construction, each $\chi_i = \chi_{\operatorname{ind}(m,j)} = \psi_{m,j} \in X_h$. Since X_h is a linear space, $w(x) \in X_h$.

Consider w(x)

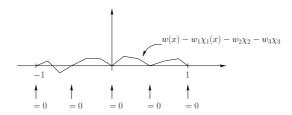


Note: $w(0) = w_1 \chi_1(0) = w_1$



Note:
$$(w - w_1 \chi_1)(-\frac{1}{2}) = w_2 \chi_2(-\frac{1}{2}) = w_2$$

 $(w - w_1 \chi_1)(\frac{1}{2}) = w_3 \chi_3(+\frac{1}{2}) = w_3$



In this way, we can determine all the w_i in a unique fashion.

b)

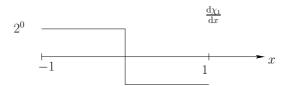
$$-u_{xx} = f$$
$$u(-1) = u(1) = 0$$

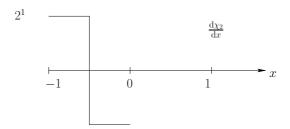
Find $u_h \in X_h = \operatorname{span}\{\chi_i, i = 1, \dots, n\}$ such that

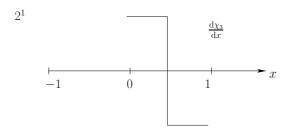
$$a(u_h, v) = l(v) \qquad \forall v \in X_h$$

$$\Rightarrow \underline{A}_h \underline{u}_h = \underline{F}_h$$

$$(A_h)_{ij} = \int_{-1}^1 \frac{\mathrm{d}\chi_i}{\mathrm{d}x} \frac{\mathrm{d}\chi_j}{\mathrm{d}x} \,\mathrm{d}x \qquad 1 \le i, j \le n$$





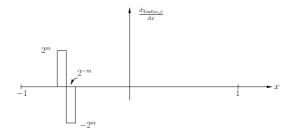


 ${\rm etc.} \dots$

Observe that $\int_{-1}^{1} \frac{\mathrm{d}\chi_{i}}{\mathrm{d}x} \frac{\mathrm{d}\chi_{j}}{\mathrm{d}x} \, \mathrm{d}x = 0$, $i \neq j$. Hence, \underline{A}_{h} is $\underline{\mathrm{diagonal}} \quad \Rightarrow \quad \mathrm{trivial}$ to solve for \underline{u}_{h} .

For each level $m = 0, \ldots, L$,

$$\left(\frac{\mathrm{d}\chi_{\mathrm{ind}(m,j)}}{\mathrm{d}x}\right)^2 = (2^m)^2, \qquad j = 1,\dots,2^m$$



Hence,

$$(A_h)_{\text{ind}(m,j)\text{ind}(m,j)} = (2^m)^2 \cdot 2 \cdot 2^{-m} = \underline{2^{m+1}}$$
 $j = 1, \dots, 2^m$ $m = 0, \dots, L$

c)

$$-u_{xx} + u = f \text{ in } \Omega$$
$$u(-1) = u(1) = 0$$
$$\Rightarrow \underline{A}_h \underline{u}_h = \underline{F}_h$$

where

$$(A_h)_{ij} = \underbrace{\int_{-1}^{1} \frac{\mathrm{d}\chi_i}{\mathrm{d}x} \frac{\mathrm{d}\chi_j}{\mathrm{d}x} \, \mathrm{d}x}_{\text{diagonal}} + \underbrace{\int_{-1}^{1} \chi_i \chi_j \, \mathrm{d}x}_{\text{quite dense}}$$

$$\text{e.g., } \int_{-1}^{1} \chi_1 \chi_j \, \mathrm{d}x \neq 0$$

$$\forall j = 1, \dots, n$$

 \Rightarrow expensive to solve for \underline{u}_h .

Exercise 1

(April 7 and 9, 2003)

a)

Let Y and $Z \subset Y$ be Hilbert spaces. Let $y \in Y$. Then $\Pi y \in Z$ such that

$$(\Pi y, v)_Y = (y, v)_Y \qquad \forall v \in Z$$

Choose $v = \Pi y \in Z \subset Y$.

$$\begin{split} (\Pi y, \Pi y)_Y &= (y, \Pi y)_Y \\ \|\Pi y\|_Y^2 &= (y, \Pi y)_Y \\ &\leq \|y\|_Y \|\Pi y\|_Y \qquad \text{(Cauchy-Schwarz)} \\ \Rightarrow & & \|\Pi y\|_Y \leq \|y\|_Y \end{split}$$

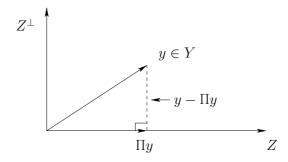
We know that

$$||y - \Pi y||_Y \le ||y - z||_Y \qquad \forall z \in Z$$

In particular, choose $z = 0 \in Z$:

Geometric interpretation:

$$||y - \Pi y||_Y \le ||y||_Y$$



b)

$$y' \in Y$$
, $\Pi y' \in Z \subset Y$

$$(\Pi y', v)_Y = (y', v)_Y \qquad \forall v \in Z$$

In particular, for $y' = \Pi y \in \mathbb{Z}$, where $y \in \mathbb{Y}$, we get

$$(\Pi(\Pi y), v)_Y = (\Pi y, v)_Y \qquad \forall v \in Z$$

or

$$(\Pi y - \Pi(\Pi y), v)_Y = 0 \qquad \forall v \in Z$$

But

$$\Pi y \in Z$$
$$\Pi(\Pi y) \in Z$$

Choose $v = \Pi y - \Pi(\Pi y) \in Z$:

$$\Rightarrow (\Pi y - \Pi(\Pi y), \Pi y - \Pi(\Pi y))_Y = 0$$
$$\|\Pi y - \Pi(\Pi y)\|_Y^2 = 0$$
$$\Rightarrow \Pi y - \Pi(\Pi y) = 0$$

or

$$\Pi(\Pi y) = \Pi y \qquad \forall y \in Y \quad .$$

Exercise 2

(April 7 and 9, 2003)

$$(w - I_h w)|_{T_h^k}(x) = \int_0^x (w - I_h w)'|_{T_h^k}(\xi) \,\mathrm{d}\xi$$

$$(\operatorname{since} (w - I_h w)|_{T_h^k}(0) = 0)$$

$$= \int_0^x [\int_{z^k}^\xi (w - I_h w)''|_{T_h^k}(\eta) \,\mathrm{d}\eta] \,\mathrm{d}\xi$$

$$= \int_0^x [\int_{z^k}^\xi w'' \,\mathrm{d}\eta] \,\mathrm{d}\xi$$

$$\leq \int_0^x [h \max_{\eta \in T_h^k} |w''(\eta)|] \,\mathrm{d}\xi$$

$$= h \max_{x \in T_h^k} |w''(x)| \cdot \int_0^x \,\mathrm{d}\xi$$

$$\leq h^2 \max_{x \in T_h^k} |w''(x)|$$

$$||w - I_h w||_{L^2(\Omega)}^2 = \sum_{k=1}^K \int_{T_h^k} (w - I_h w)^2 |_{T_h^k} dx$$

$$\leq \frac{1}{h} \cdot h \cdot (h^2 \max_k \max_{x \in T_h^k} |w''|)^2$$

$$= h^4 (\max_{T_h \in \mathcal{T}_h} \max_{x \in T_h} |w''|)^2$$

$$\Rightarrow ||w - I_h w||_{L^2(\Omega)} \leq h^2 \max_{T_h \in \mathcal{T}_h} \max_{x \in T_h} |w''|$$

Exercise 3

(April 7 and 9, 2003)

Consider the Poisson problem in \mathbb{R}^1 : Find $u \in X = H_0^1(\Omega)$ such that

$$a(u, v) = l(v) \qquad \forall v \in X$$

where

$$a(w,v) = \int_0^1 w_x v_x \, \mathrm{d}x$$
$$l(v) = \int_0^1 fv \, \mathrm{d}x$$

Discrete problem using $\underline{\text{linear}}$ finite elements: Find $u_h \in \subset X$ such that

$$a(u_h, v) = l(v) \quad \forall v \in X_h$$

Orthogonality:

$$a(u - u_h, v) = 0 \quad \forall v \in X_h$$

Consider

$$a(u - I_h u, v) = \int_0^1 (u_x - (I_h u)_x) v_x \, dx$$

$$= \sum_k \int_{T_h^k} (u_x - (I_h u)_x) v_x \, dx$$

$$= \sum_k \left[\underbrace{(u - I_h u)}_{\uparrow} v_x \right]_{\partial T_h^k} - \int_{T_h^k} (u - I_h u) v_{xx} \, dx$$

$$= 0$$

$$= 0$$

$$\text{by definition}$$
of the interpolant

$$\Rightarrow a(u - I_h u, v) = 0 \qquad \forall v \in X_h$$

$$\Rightarrow \underline{u_h = I_h u} \quad \text{(due to the uniqueness of the solution)}$$

Note that, since the orthogonality relation is satisfied for both u_h and $I_h u$, the distance $||| u - u_h |||$ and $||| u - I_h u |||$ are both minimized over all elements in X_h , i.e., u_h and $I_h u$ are both the closest we can come to the exact solution measured in the energy norm. Due to the uniqueness of the discrete solution, $u_h = I_h u$. Note that, in general, this result is *not* true in higher space dimensions.

Exercise 4

(April 7 and 9, 2003)

General bound

$$\parallel e \parallel = \inf_{w_h \in X_h} \parallel u - w_h \parallel$$

where

$$e = u - u_h, \qquad u \in X, \qquad u_h \in X_h \subset X$$
$$\parallel e \parallel^2 = a(e, e)$$

 $\underline{\text{If}}$

$$a(w,v) = \int_{\Omega} (\nabla w \cdot \nabla v + w \cdot v) \, \mathrm{d}\Omega \tag{*}$$

then

$$\| e \|^2 = a(e,e) = \int_{\Omega} (\nabla e \cdot \nabla e + e \cdot e) d\Omega = \int_{\Omega} (|\nabla e|^2 + e^2) d\Omega = \| e \|_{H^1(\Omega)}^2$$

Hence, in this particular case,

$$||e||_{H^1(\Omega)} = \inf_{w_h \in X_h} ||u - w_h||_{H^1(\Omega)}$$

that is, u_h is the H^1 projection of u on X_h .

The SPD bilinear form (*) corresponds to solving the Helmholtz equation

$$-\nabla^2 u + u = f \text{ in } \Omega$$

with

$$u = 0$$
 on $\partial\Omega$ (for example)