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Exercise 6

(April 2, 2003)

Xp={ve X|U’T;L € Py(Th),V Ty, € T}
Here X = H}(2) (Dirichlet problem)

a)

'U|T}If EPQ(T}IS) :>U(IL’)’T}1: :ak+bkaj+ckx2, /‘JIl,...

T T - i
| 1 1 1 | K=n+1
T T T2 Tn Tntl -
Counting argument:
internal

continuity

number of conditions

elements v e HH )

. — l

degrees-of-freedom boundary
associated with  conditions
a polynomial of
degree 2

dim(X),) = 2n + 1.

b)

M Pi € Xp,

Matrix structure (using a natural ordering):

pi(wj) = 045



T T
r r T x
T T T

r r r T x

T T T

Ap = r T x

Five diagonals with non-zero elements. (Recall that linear elements resulted in
Ap, being tridiagonal).

Variable bandwidth due to different kinds of basis functions.

We will return to this exercise later in the course.

Exercise 7

(April 2, 2003)

From Exercise 7 & 11 of Problem set 2, we concluded:

u €H*(Q) = u € CH(Q)
= 18 continuous

Uz 1s continuous
If

up € Xp € H*(Q) = wy, is continuous

(up)s is continuous

Consider linear elements:

z=0
\ N - T / K=n+1
Zo o

T2 cee L Ln+1

If uply € PL(T}Y) = unlgp = ax + bra.
Let m be the number of essential b.c.’s. Then, the number of degrees-of-freedom
is:



N=2n+1)—m-—2n=2—m.

In Exercise 7 (Problem set 2), m =4 = N = —2.
In Exercise 11 (Problem set 2), m =2 = N =0.

Conclusion: If we insist that u, € X;, C X (i.e., conforming approximation), we
cannot use linear elements. With linear elements, we do not have any degrees-
of-freedom left to approximate the solution.

Exercise 8

(April 2, 2003)

—Upy + 72w = fin Q= (0,1)
u(0) =u(1) =0

1 1
/ (—Ugy + 'y2u)v dz = / fudx Yve X
0 0
1 1
= / (ugvy + 'y2uv) de = / fudx Yve X
0 0

Weak form: Find v € X such that

a(u,v) =l(v) Vo e X

where
1
a(w,v) = / (wave + Y2wv) dz
0

l(v) = /01 fodx

a(w,v) = a(v,w)

SPD Vw € X
a(w,w) = [Mw? +12w?)de >0
w#0
X ={ve H(Q)v(0) =v(1) = 0}
1
J(w) = ia(w,w) — l(w)
u = arg mi)r%J (w) -minimization statement
we



b)
Discrete problem: Find u, € Xj, C X such that

a(up,v) = 1(v) Vv € X,
Let Xp, = span{p1, pa,...,pn} be a nodal basis.

n
= up = Zuhjgaj(a:)
j=1

n
szcpi(x) Yv e Xp,
i=1
The discrete problem then becomes: Find u;, € R™ such that

n n n
a(Y unps, > vigi) =Y Jvigi)  weER”
j=1 i=1 i=1

n n n

Z Z via(pi, pj)un; = Z vil (¢i)

i=1 j=1 i=1

— Apuy, = Fy,

where
1 1
de; dg; 2 /
hiy = a(®i, ;) /O o g &t | pide
AI};j;:lacian Mhij
Hence:

Laplaci
Ajy = AN = AJSPROR 420,

Exercise 9

(April 2, 2003)

a)

w(z) = sz‘Xi(x)
=1
Xy ={v e X = Hy(Q)|vlzy € Py (T}, k=1,...,K}

) = ¥m,j € Xp. Since Xp, is a linear space,

By construction, each y; = Xind(m,j

w(z) € Xp.

Consider w(x)



,/— w(z) € X,

Note: w(0) = wyx1(0) = w;

1 1
Note : (w — lel)(—g) = szz(—i) = wg
1 1
(w— w1x1)(§) = w3X3(+§) = w3
w(x) — wixi () — wax2 — WiX3
S
=N —

In this way, we can determine all the w; in a unique fashion.
b)
—Ugy = f

u(—1)=wu(1)=0

Find up € X, = span{x;,i =1,...,n} such that



a(up,v) = l(v) Vv e X,
= Apu, = F,

1did-
(Ah)ij:/ XN qp  1<ij<n

_1 dz dz
%
20 ‘
) L x
2! —
dxe
1 : : v
-1 0 1
21
dz
| | | T
—1 0 1

ete. ...

Observe that f_11 %% dx =0, ¢ # j. Hence, 4, is diagonal = triv-

ial to solve for wy,.
For each level m =0,..., L,

dXind(m J)\2 2 .
) = (2™ =1,...,2™
(—g ) =" J=L..,



Hence,
_ [om)\2 -m __ om+1 ]:17
(Ah)ind(m,j)ind(m,j) - (2 ) 2.2 =2"" m=0,...

c)

—Uge +u = fin

u(—1) =u(l) =0

= Apuy, = F,

where

1 1
dx; dx; /
Ap)ii = —d ixad
( h)j /_1 dr dx T _1XX] .

| S — ~———

diagonal quite dense
1
e.g., f_l x1x;j dz # 0
Vi=1,...,n

= expensive to solve for u,.

Exercise 1

(April 7 and 9, 2003)

a)

2m

Let Y and Z C Y be Hilbert spaces. Let y € Y. Then Ily € Z such that

(Hy7U)Y = (y,v)y YveZ

Choosev=1Ilye Z CY.



(Ily, y)y = (y,Hy)y
IMy[l§- = (y, My)y
<|lylly|Mylly  (Cauchy-Schwarz)

= [Mylly < llylly
We know that

ly —Tylly <l|ly— 2|y VzeZ

In particular, choose z =0 € Z:
Geometric interpretation:

ly — Mylly <|ylly

ZL

b)

yeY, IIyyeZcy

(Hy/7U)Y = (y/a U)Y YveZ
In particular, for y' = Ily € Z, where y € Y, we get

(I(y),v)y = (ly,v)y  VweZ

(My — II(ITy),v)y =0 YveZ
But

Iy e Z
II(Ily) € Z



Choose v = ITy — II(Ily) € Z:

= (y — (ITy), Ty — TI(ITy))y =0
Ty — TI(TTy)[f3 = 0
= Iy —II(Ily) = 0

or

[I(ITy) = Iy VyeY

Exercise 2

(April 7 and 9, 2003)

(= l(e) = [ (0= T gy (€)d¢

1
(since (w_Ihw)‘T}’f(o)ZO)

- “(w — D) () dn] e

k

=/0w[/jw”dn1ds

s/ox[h x|’ (n)]] dé

neTy

—hmax|w" ]/df

a:eT

< h? max|w” (z)|
€Tk

K
||w—Ith%2 Z/ w — Iyw)? de:c
k=1

<z h - (h? max grcnax\w”\)z

—_

= h*( max max|w”|)?
ThGTh (EETh

= |lw = Ihw| 20 < h? mnax ;rg%f‘w//
2

10



Exercise 3

(April 7 and 9, 2003)

Consider the Poisson problem in R!:
Find u € X = H}(2) such that

a(u,v) = l(v) YveX

where

a(w,v) = /1 Wy vy d
0
1
l(v):/ fodx
0

Discrete problem using linear finite elements:
Find up €C X such that

a(up,v) = 1(v) Vv e X,

Orthogonality:

a(u —up,v) =0 Vv € Xy,

Consider

1
a(u — Inu,v) = /0 (ugy — (Inu)z)v, de
_ g /T ;f (g — (Tntt)s vy da

= g[ (u —TIhU) Um]aT;; — /k(u — Ihu) vy, do

T T
0 -0
- veX
by definition ( R
of the interpolant
= a(u— Ihu,v) =0 Vv € X,
= up, = Ipu (due to the uniqueness of the solution)

Note that, since the orthogonality relation is satisfied for both w; and I,u, the
distance || u—uy, || and || w—Ipu || are both minimized over all elements in X},
i.e., up and Ipu are both the closest we can come to the exact solution measured
in the energy norm. Due to the uniqueness of the discrete solution, u, = Ihu.
Note that, in general, this result is not true in higher space dimensions.
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Exercise 4

(April 7 and 9, 2003)

General bound

where

then

e I

= 1 f —
lell= it flu=rw|

e=u—up, u € X, up € Xp C X

e I = a(e,e)

a(w,v) :/Q(Vw-Vv%—w'U)dQ (%)

ae.e) = [ (Ve-Vere-epa= [ (e P+e)dn = el

Hence, in this particular case,

lell o) = wilelgthu — whl (o)

that is, up is the H! projection of u on Xj,.
The SPD bilinear form (x) corresponds to solving the Helmholtz equation

with

—Vu+u=finQ

u =0 on 0N (for example)
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