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Exercise 1

We first express the element matrix associated with element T,]f as a sum of two
contributions: one from the diffusion term and one from the convection term,
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We have already seen how to derive
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On page 5 in the notes dated March 9, 2004, we derived the result
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Explicit computation of C’L"’B, a, f = 1,2 then gives:
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and

Exercise 2

—KUgy — Uugy =0 in Q = (0, 00)
u(0) =0
u(o00) =0

Second-order central differences gives (see the notes dated March 9, 2004):
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As derived in class, the exact difference solution can be expressed as:
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Here, the grid Peclet number P, = % = UTA” > 0.

Oscillations (defined as 4; being both negative and positive) will occur when

1—-Py/2<0=P;>2

This corresponds to Az > 2¢, i.e., we do not resolve the true boundary layer of
thickness €.

Exercise 3

Modified problem:
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Second-order finite differences applied to the modified problem gives:
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i.e., first order upwinding applied to the original problem.

The grid Peclet number for the modified problem (< first order upwinding)
is:
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max ﬁg =2 = first order upwinding is always stable (no oscillations), but we
€

will experience a loss of accuracy. As e goes to zero (¢ < Ax), the numerical
solution will have a boundary layer of thickness approximately equal to Axz/2,
i.e., the error in the boundary layer region will be O(1). However, the outer
solution will be good.




