

TMA4220 Finite Element Method Fall 2016

Norwegian University of Science and Technology Institute of mathematics

Exercise set 1

 $\boxed{1}$ Given a symmetric positive definite bilinear form $a(\cdot,\cdot)$ and linear form $F(\cdot)$, show that the problem: find $u_h \in H^1_0(\Omega)$ such that

$$a(u, v) = F(v), \quad \forall v \in H_0^1(\Omega)$$

has a unique solution if it exist (Hint: consider two solutions u_1 and u_2 and show that they must be equal).

2 Let $V = H_0^1(0,1)$, and take $a: V \times V \to \mathbb{R}$ and $F: V \to \mathbb{R}$ defined in the following way:

$$F(v) = \int_0^1 (-1 - 4x)v(x)dx, \quad a(u, v) = \int_0^1 (1 + x)u'(x)v'(x)dx$$

- a) Show that the bilinear form $a(\cdot, \cdot)$ is continuous and coercive and that the problem "find $u_h \in V$ such that a(u, v) = F(v)" has a unique solution by the Lax Milgram theorem.
- **b)** Verify that this solution is $u(x) = x^2 x$.
- a) For which $\alpha \in \mathbb{R}$ does the function $f(x) := |x|^{\alpha}$ lie in $L^2([-1,1])$? What about $L^2([1,\infty))$? What about $L^2(B_1(0))$, where $B_1(0) = \{x \in \mathbb{R}^2 : |x| < 1\}$ is the unit ball in \mathbb{R}^2 ?
 - **b)** If $D \subset \mathbb{R}$ is a closed, bounded subset of \mathbb{R} and $f \in C^0(D)$, show that $f \in L^2(D)$.
 - c) Let $\Omega \subset \mathbb{R}$ be some open interval. A weak derivative of a function $u: \Omega \to \mathbb{R}$ is a function $v: \Omega \to \mathbb{R}$ such that

$$\int_{\Omega} u(x)\phi'(x) \ dx = -\int_{\Omega} v(x)\phi(x) \ dx$$

for every $\phi \in C_c^{\infty}(\Omega)$, the set of infinitely differentiable functions with compact support in Ω . Show that the weak derivative (if it exists) is unique. Show that if u is continuously differentiable (i.e. $u \in C^1(\Omega)$), then $\frac{du}{dx}$ is its weak derivative.

d) Let

$$f_1(x) := \begin{cases} x & \text{if } 0 < x < 1\\ 1 & \text{if } 1 \le x < 2, \end{cases} \qquad f_2(x) := \begin{cases} x & \text{if } 0 < x < 1\\ 2 & \text{if } 1 \le x < 2 \end{cases}$$

for $x \in \Omega := (0, 2)$. Show that $f_1, f_2 \in L^2(\Omega)$. Show that $f_1 \in H^1(\Omega)$ by finding its weak derivative, and that $f_1 \notin H^2(\Omega)$. Show that $f_2 \notin H^1(\Omega)$.

4 Consider the homogenuous dirichlet problem

$$-u''(x) = 1, x \in [0, 1]$$

$$u(0) = 0$$

$$u(1) = 0$$

and it's corresponding Galerkin problem:

Find $u_h \in X_h^1$ such that

$$\begin{split} a(u_h,v_h) &= F(v), \quad \forall v_h \in X_h^1 \\ a(u,v) &= \int_0^1 u'(x)v'(x)\mathrm{d}x \\ F(v) &= \int_0^1 v(x)\mathrm{d}x \\ X_h^1 &= \{v \in C^0([0,1]) : v|_{K_j} \in \mathbb{P}_1 \forall K_j \in \mathcal{T}_h\} \end{split}$$

Can be solved by the following Matlab code:

```
n = 20;
                     % number of nodal points
x = linspace(0,1,n); % nodal points
A = zeros(n);
               % system matrix
                % right-hand side
b = zeros(n,1);
h = diff(x);
                   % element size
                  % element loop
for el=1:n-1
 k = el:el+1;
 A(k,k) = A(k,k) + [1,-1;-1,1]/h(el);
 b(k)
       = b(k) + h(el)/2;
end
A([1,n],:) = [];
                   % remove boundary conditions
A(:,[1,n]) = [];
b([1,n])
u = A \setminus b;
                   % solve system
```

a) How would you modify the code to instead solve the following mixed boundary value problem

$$-u''(x) = 1, x \in [0, 1]$$

$$u(0) = 0$$

$$u'(1) = 1$$

b) What is the exact solution to this problem? Plot your finite element solution and the exact solution in the same plot.