

1 If you are not familiar with the Lebesgue spaces $L^p(\Omega)$ and the Sobolev spaces $H^p(\Omega)$, you should read section 2.3.1 and 2.4.0-2.4.2

Are the following statements true or false?

- a) The set $S = \{v \in C^0(0,1) : v(\frac{1}{2}) = 1\}$ is a linear (vector) space
- **b)** For $V = H_0^1(0, 1), F(v) = \int_0^1 xv \, dx$ is a linear functional.
- c) The only v in $H^1(\Omega)$ for which $|w|_{H^1(\Omega)}$ (the H^1 semi-norm) is zero is v = 0.
- d) The function $v = x^{3/4}$ is in $L^2(0,1)$; in $H^1(0,1)$; in $H^2(0,1)$.
- e) For $v = e^{-10x}$, $|v|_{H^2(0,1)} = |v|_{H^1(0,1)}$.
- 2 For each of the following problem, (i) find a weak formulation of the PDE and (ii) choose an appropriate test/trial space V where u and v live. Show that the conditions of the Lax-Milgram theorem are satisfied, thus proving that there exist a unique (weak) soltuion of the PDE, by proving $a(\cdot, \cdot)$ is (iii) continuous and (iv) coercive. Assume $\Omega \subset \mathbb{R}^2$ is an open, bounded, connected domain and $f \in L^2(\Omega)$.
 - a) The biharmonic equation:

$$\nabla^4 u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$
$$\frac{\partial u}{\partial n} = 0 \quad \text{on } \partial \Omega$$

b) The Convection-Diffusion equation

$$-\nabla^2 u + a \cdot \nabla u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

where $a = a(\mathbf{x} : \Omega \to \mathbb{R}^2$ is a given differentiable function, the velcotiv field, satisfying $\nabla \cdot a(\mathbf{x}) = 0$ for all \mathbf{x} .