TMA4220 Finite
Element Method
Fall 2016

Norwegian University of Science

and Technology Exercise set 2
Institute of mathematics

Consider the equation
—Ugy = f($)a 0<z<l, U(O) =0, u(l) =0,

which is solved with the finite element method with equidistant grid (x; = ih, h =
1/N), and the basis functions

=l for oo <z <y,
pi(z) = ¢ == for oy < < xiqq,
0 otherwise.

fori=1,2,...,N — 1.
Denote the numerical solution uy,.

a) Solve this equation with f(z) = z*.

Solution:

//x dxdx—%x + Ciz + Cq (1)
Letting u(0) = u(1) = 0, we get C; = —% and Cy =0

b) Plot the exact solution and the computed solution. How do these compare on
the gridpoints. How do they compare between gridpoints?

Solution:  This reveals that the exact solution u(x) coincides with the computed
solution up(x) at the gridpoints. There is a discrepancy between the two in the domain
between gridpoints.

You may have noticed that the numerical and exact solution coincide on the grid-
points, that is
u(z;) = up(z;), fori=0,1,2,...,N.

We will now show that this is true for all f(z). For i = 0 and ¢ = N, there is nothing
to prove (Why?), what remains is i = 1,2,..., N — 1.

c) Prove that a(u — up, ;) =0fori=1,2,...,N — 1.

Solution: Let V}, = span{¢1,¥2,...,on—1} CV = H([0,1]). Then the numerical
solution satisfies

a(up,vp) = f(op) Yv €V,

while the exact solution satisfies

a(u,v) = f(v) YveV.
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pi €V CV, so

a(u — up, ;) = a(u, ;) — alup, ;) a bilinear.
flpi) = fei) u and up, solves the weak problems.
0

d) Prove that for all v € H'([0,1]) N C°([0,1]) and i = 1,2..., N — 1,

(v, 1) = 7 (20(:) — (1) — v(ris1)).

Solution: .
a(v, 902') = / vx@% dx.
0

%, forxm_1 <z <uwmy,
©F = —%, forx; < x < miqq,
0, otherwise.
x X
[3 fo i+1 VX
a(v,gp-):/ dx—/ —dx
' ziq D x b
1
= 7 (@) —v(@i1) = (Vi) = v(2i)))
1
= 7 (2u(zi) = v(zi-1) = v(@ir)).
e) The M x M matrix
2 -1
A= -1 2
-1
-1 2

is invertible for all M. Use this fact and the results of ¢) and d) to prove that
u(z;) —up(z;) =0fori=1,2...,N — 1.

Solution:  Combining the results of ¢) and d), we see that v; = u(x;) — up(x;)

satisfies

—Vi—1 + 21)1' — Vj4+1 = 0
fori=1,2,..., N—1. Removing vy and vy, (which are equal to zero) this is equivalent
to

Av =0

where A is as above and v = [v1vs . . .’L)N_l]T. Since A is invertible, Av =0 = v = 0.

Given the Helmholtz problem

—Ugy +ou= fon (0,1),
u(0) = u(1) = 0.
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where ¢ > 0 is a constant. Set up the weak form for this problem. Show that, when
this problem is solved by a Galerkin method, using Vj, = span {p;} Z]\L 1> the discrete
problem can be written as

(A+oM)u="f.

Set up the matrix M for V) = X % on a uniform grid.

Solution:  Multiply by the equation by a test function v, integrate over the domain
(0,1), use partial integration and get rid of the boundary terms by require v(0) =
v(1) = 0. The the weak formualtion becomes:

1 1 1
Find v € H}(Q) such that / VpUzdr + a/ wvdr = / fodx, Vv e H}(0,1).
0 0 0
Choose Vi, = span{ 1, 2, ..., on}, let our unknown approximation be written as
N
un(z) = u; o),
j=1

where the coefficients u; is found from

5[ (dy di > '
L 2 dr+o /(gowpi)dx:/ (f pi)dex, i=1,2,---,N.
JZ;/O (d$ d$> ; 0o’ 0

This is a linear system of equations

Au+oMu=f~f

where

1 ngd(,O 1 1
Ai‘: - ! d 3.7 — i id d i = id-
(Ai; /0 (dm dx) T, M;,; /0 (pjpi)dr  and f, /0 (fei)dx

N.

)

Let Vi, = X% on a uniform grid, so that h =1/N and xz; = ih, i =0,1,...

®Yi—1 ®i PYi+1

Ti—2 Ti—1 T Li+1 Tit2
The non-zeros elements of the stiffness matriz A and the mass matric M is

Tit1 d(pi 2 Tit1 d(pi_H dcpi 1
A= dr=—, Ajip1= dr = —— = Aj11
' /z < dx > T sitl /:cz de dz " h +1,

i—1

Tit1 9 2 Ti+1 1
M;; = / pide = zh, My = / pir1pidr = ch =M.
x x

i—1 i
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All the other elements are 0. So

4 1 0
1 4 1
M:E 1 4 eR(N*l)X(Nfl).
6
0 1 4

Write a MATLAB program for solving the Helmholtz problem
—Ugy + ou = f(x), 0<z<1, u(0) = u(1) = 0.

or, using the weak formulation
1 1 1
find u € H}(0,1) s.t. / UgVpdx + 0'/ wvdr = / fodz, for all v € H}(0,1) (2)
0 0 0

by the finite element method on X ,%, using the algorithm outlined in the supplemen-
tary note.

To test your code, let 0 = 1, f = sin(7z) in which case u(x) = sin(7z)/(1 + 72).
Use for example [0,0.1,0.25,0.3,0.4,0.45,0.5,0.55,0.6,0.7,0.8,0.9, 1] for the parti-
tion of the elements.

As already pointed out in exercise 2, the discrete problem can be written as
(A+oM)u=hb. (3)

So the task is to set up the matrices A and M and the load vector b, and solve the
system. What you have to do is described in the following:

a) Preliminaries:
Set up the element matrices AhK and M, }f( , corresponding to contribution from
element K to the first and second integrals of (2) resp.
Solution:  Starting from the very beginning: The quadratic shape functions
defined on the reference element K = (0,1), corresponding to the nodes 1 = 0,
x9 =1/2 and x3 =1 is given by

DO =26~ D)E-1), thale) = ~4EE - 1), dsla) = 26(E— 5).

The mapping from the K to K = (g, Tr11) 1s given by x(§) = xp + hip& and
the inverse mapping is £(x) = (v — xy)/hy, where hy = T — Tk

A L4 2 -1
AR = 5|8 16 -8, ME = :?8 2 16 2
F\1 -8 7 -1 2 4

So the contribution from element K to the element matrices M}{{ and AhK be-
comes:
K L gV K !
(M0 = [ K@l @o = hi [ valeva(erae
Tk
Th+1 ] K d K 1 1 ad
(Ao, =/ Pa 208 gy o L [ Yadls

o - d
de v T 0y ), de de

k
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se the slides on the webpage for details. Altogether, we ends up with:

A L4 2 -1
AR = 5|8 16 -8, ME = 3%) 2 16 2
F\1 -8 7 -1 2 4

b) Write a function computing integrals by the following quadrature formula:

[t

1
/0 g(z)dx ~ 5(9(01) +9g(c2)), cl2 = % +

This will be used for to approximate the contribution from an element to the
load vector.
Solution: On an element, the approximation becomes

Th+1 h h
[ e St ) ot o)
T

But the contributions to the load vector is ff:“ vi(z) f(x)dx, so that

k

Th+41 2
b = / pi(x) f(z)de ~ Y vi(e)) fan + ¢)).
x =1

The corresponding function can be

function b = bk(f,x)

/ Calculate a numerical approzimation to the elemental load vector
4 of the function f on an element [xz(1),z(2)].

/4 using quadratic elements.

h = x(2)-x(1);

cl 1/2-sqrt (3)/6;

c2 1/2+sqrt (3)/6;

b = h*[(c1-0.5)*(cl-1)*xf(x(1)+h*cl) + (c2-0.5)*(c2-1)*xf(x(1)+h*xc2);
2%cl*x(1-cl1)*xf(x(1)+h*cl) + 2xc2*x(1-c2)*f(x(1)+h*c2);
cl1x(c1-0.5)*f(x(1)+h*cl1)+c2%(c2-0.5)*f(x(1)+h*c2)];

c) Assemble the prototype matrices A, and M, as well as the load vector b.

Solution: For points b)-e), see Figure 1.
d) Remove the rows and columns corresponding to the boundary conditions.

e) Solve (3), and plot the solution.
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f = @(x) sin(pix*x);
sigma = 1;

/4 The partition of [0,1].
x = [0,0.1,0.256,0.3,0.4,0.45,0.5,0.55,0.6,0.7,0.8,0.9,1];

Ak = [7/3, -8/3, 1/3; / Element stiffness matriz
-8/3, 16/3, -8/3;
1/3, -8/3, 7/31;
Mk = [2/15, 1/15, -1/30; [/ Element mass matriz
1/15, 8/15, 1/15;
-1/30, 1/15, 2/15]1;
Nk = length(x)-1; 4 Number of elements.
N = 2xNk+1; 4 Number of mnodes (including the boundaries)

theta = @(k,alpha) 2*(k-1)+alpha; / local-to-global mapping.

Ah = sparse(N,N); 4 Stiffness matriz
Mh = sparse(N,N); /4 Mass matriz resp.
bh = zeros(N,1); / Load wector

4 Assemble process:
for k = 1:Nk
h = x(k+1)-x(k); /4 Size of the element
gi = theta(k,1):theta(k,1)+2;
Ah(gi,gi) = Ah(gi,gi) + Ak/h;
Mh(gi,gi) = Mh(gi,gi) + Mk*h;
bh(gi) = bh(gi) + bk(f,[x(k),x(k+1)]1);

end
/ For the case u(0)=u(1)=0
/ Remove contributions concerning the Dirichlet boundaries.

= Ah(2:end-1,2:end-1);
= Mh(2:end-1,2:end-1);
= bh(2:end-1);

o= =

4 Solve the system
u = (A+sigma*M)\b;

/ Include the boundaries.
u = [0;u;0];

4 For the plot: (Create a z-vector with all the nodes
4 including the midpoints of each element.
xi = x(1);
for k=1:Nk
xi = [xi;x(R)+(x(k+1)-x(k))/2; x(k+1)];
end

/ Plot the numerical and the ezact solution %in the nodes.
u_exact = sin(pix*xi)/(1+pi~2);

plot (xi,u_exact,’r’,xi,u,’b’)

legend (’u_exact’,’u_h’);

Figure 1: Code for solving the Helmholtz equation in 1D by a quadratic FEM
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