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1 Consider the equation

−uxx = f(x), 0 < x < 1, u(0) = 0, u(1) = 0,

which is solved with the finite element method with equidistant grid (xi = ih, h =
1/N), and the basis functions

ϕi(x) =











x−xi−1

h
, for xi−1 ≤ x ≤ xi,

xi+1−x

h
for xi ≤ x ≤ xi+1,

0 otherwise.

for i = 1, 2, . . . , N − 1.

Denote the numerical solution uh.

a) Solve this equation with f(x) = x4.

Solution:

u(x) =

∫ ∫

x4 dx dx =
1

30
x6 + C1x+ C2 (1)

Letting u(0) = u(1) = 0, we get C1 = − 1
30 and C2 = 0

b) Plot the exact solution and the computed solution. How do these compare on
the gridpoints. How do they compare between gridpoints?

Solution: This reveals that the exact solution u(x) coincides with the computed
solution uh(x) at the gridpoints. There is a discrepancy between the two in the domain
between gridpoints.

You may have noticed that the numerical and exact solution coincide on the grid-
points, that is

u(xi) = uh(xi), for i = 0, 1, 2, . . . , N.

We will now show that this is true for all f(x). For i = 0 and i = N , there is nothing
to prove (Why?), what remains is i = 1, 2, . . . , N − 1.

c) Prove that a(u− uh, ϕi) = 0 for i = 1, 2, . . . , N − 1.

Solution: Let Vh = span{ϕ1, ϕ2, . . . , ϕN−1} ⊂ V = H1
0 ([0, 1]). Then the numerical

solution satisfies
a(uh, vh) = f(vh) ∀v ∈ Vh,

while the exact solution satisfies

a(u, v) = f(v) ∀v ∈ V.
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ϕi ∈ Vh ⊂ V , so

a(u− uh, ϕi) = a(u, ϕi)− a(uh, ϕi) a bilinear.

= f(ϕi)− f(ϕi) u and uh solves the weak problems.

= 0.

d) Prove that for all v ∈ H1([0, 1]) ∩ C0([0, 1]) and i = 1, 2 . . . , N − 1,

a(v, ϕi) =
1

h
(2v(xi)− v(xi−1)− v(xi+1)).

Solution:

a(v, ϕi) =

∫ 1

0
vxϕ

′

i dx.

ϕ′

i =











1
h
, for xi−1 < x < xi,

− 1
h
, for xi < x < xi+1,

0, otherwise.

a(v, ϕi) =

∫ xi

xi−1

vx
h

dx−
∫ xi+1

xi

vx
h

dx

=
1

h
(v(xi)− v(xi−1)− (v(xi+1)− v(xi)))

=
1

h
(2v(xi)− v(xi−1)− v(xi+1)).

e) The M ×M matrix

A =













2 −1

−1 2
. . .

. . .
. . . −1
−1 2













is invertible for all M . Use this fact and the results of c) and d) to prove that
u(xi)− uh(xi) = 0 for i = 1, 2 . . . , N − 1.

Solution: Combining the results of c) and d), we see that vi = u(xi) − uh(xi)
satisfies

−vi−1 + 2vi − vi+1 = 0

for i = 1, 2, . . . , N−1. Removing v0 and vh, (which are equal to zero) this is equivalent
to

Av = 0

where A is as above and v = [v1v2 . . . vN−1]
⊤. Since A is invertible, Av = 0 ⇒ v = 0.

2 Given the Helmholtz problem

−uxx + σu = f on (0, 1) ,

u(0) = u(1) = 0.
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where σ > 0 is a constant. Set up the weak form for this problem. Show that, when
this problem is solved by a Galerkin method, using Vh = span {ϕi} N

i=1, the discrete
problem can be written as

(A+ σM)u = f .

Set up the matrix M for Vh = X1
h on a uniform grid.

Solution: Multiply by the equation by a test function v, integrate over the domain
(0, 1), use partial integration and get rid of the boundary terms by require v(0) =
v(1) = 0. The the weak formualtion becomes:

Find u ∈ H1
0 (Ω) such that

∫ 1

0
vxuxdx+ σ

∫ 1

0
uvdx =

∫ 1

0
fvdx, ∀v ∈ H1

0 (0, 1).

Choose Vh = span{ϕ1, ϕ2, . . . , ϕh}, let our unknown approximation be written as

uh(x) =
N
∑

j=1

uj ϕj(x),

where the coefficients uj is found from

N
∑

j=1

∫ 1

0

(

dϕj

dx

dϕi

dx

)

dx+ σ
N
∑

j=1

∫ 1

0
(ϕj ϕi)dx =

∫ 1

0
(f ϕi)dx, i = 1, 2, · · · , N.

This is a linear system of equations

Au+ σMu = f

where

(Ai,j =

∫ 1

0

(

dϕj

dx

dϕi

dx

)

dx, Mi,j =

∫ 1

0
(ϕj ϕi)dx and fi =

∫ 1

0
(fϕi)dx.

Let Vh = X1
h on a uniform grid, so that h = 1/N and xi = ih, i = 0, 1, . . . , N .

xi−2 xi−1 xi xi+1 xi+2

ϕi−1 ϕi ϕi+1

h h h h

The non-zeros elements of the stiffness matrix A and the mass matrix M is

Ai,i =

∫ xi+1

xi−1

(

dϕi

dx

)

dx =
2

h
, Ai,i+1 =

∫ xi+1

xi

dϕi+1

dx

dϕi

dx
dx = −1

h
= Ai+1,i

Mi,i =

∫ xi+1

xi−1

ϕ2
i dx =

2

3
h, Mi,i+1 =

∫ xi+1

xi

ϕi+1ϕidx =
1

6
h =Mi+1,i.
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All the other elements are 0. So

M =
h

6

















4 1 0
1 4 1

1 4
. . .

. . .
. . . 1

0 1 4

















∈ R
(N−1)×(N−1).

3 Write a MATLAB program for solving the Helmholtz problem

−uxx + σu = f(x), 0 < x < 1, u(0) = u(1) = 0.

or, using the weak formulation

find u ∈ H1
0 (0, 1) s.t.

∫ 1

0
uxvxdx+ σ

∫ 1

0
uvdx =

∫ 1

0
fvdx, for all v ∈ H1

0 (0, 1) (2)

by the finite element method on X2
h, using the algorithm outlined in the supplemen-

tary note.

To test your code, let σ = 1, f = sin(πx) in which case u(x) = sin(πx)/(1 + π2).

Use for example [0, 0.1, 0.25, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7, 0.8, 0.9, 1] for the parti-
tion of the elements.

As already pointed out in exercise 2, the discrete problem can be written as

(A+ σM)u = b. (3)

So the task is to set up the matrices A and M and the load vector b, and solve the
system. What you have to do is described in the following:

a) Preliminaries:
Set up the element matrices AK

h and MK
h , corresponding to contribution from

element K to the first and second integrals of (2) resp.
Solution: Starting from the very beginning: The quadratic shape functions
defined on the reference element K̂ = (0, 1), corresponding to the nodes x1 = 0,
x2 = 1/2 and x3 = 1 is given by

ψ1(ξ) = 2(ξ − 1

2
)(ξ − 1), ψ2(x) = −4ξ(ξ − 1), ψ3(x) = 2ξ(ξ − 1

2
).

The mapping from the K̂ to K = (xk, xk+1) is given by x(ξ) = xk + hkξ and
the inverse mapping is ξ(x) = (x− xk)/hk, where hk = xk+1 − xk.

AK
h =

1

3hk





7 −8 1
−8 16 −8
1 −8 7



 , MK
h =

hk
30





4 2 −1
2 16 2
−1 2 4





So the contribution from element K to the element matrices MK
h and AK

h be-
comes:

(MK
h )α,β =

∫ xk+1

xk

ϕK
α (x)ϕK

β (x)dx = hk

∫ 1

0
ψα(ξ)ψβ(ξ)dξ

(AK
h )α,β =

∫ xk+1

xk

dϕK
α

dx

dϕK
β

dx
dx =

1

hk

∫ 1

0

ψα

dξ

dψβ

dξ
dξ
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se the slides on the webpage for details. Altogether, we ends up with:

AK
h =

1

3hk





7 −8 1
−8 16 −8
1 −8 7



 , MK
h =

hk
30





4 2 −1
2 16 2
−1 2 4





b) Write a function computing integrals by the following quadrature formula:

∫ 1

0
g(x)dx ≈ 1

2
(g(c1) + g(c2)), c1,2 =

1

2
±

√
3

6
.

This will be used for to approximate the contribution from an element to the
load vector.
Solution: On an element, the approximation becomes

∫ xk+1

xk

g(x)dx ≈ g(xk + c1hk) + g(xk + c2hk)

2
.

But the contributions to the load vector is
∫ xk+1

xk
ϕi(x)f(x)dx, so that

bKi =

∫ xk+1

xk

ϕi(x)f(x)dx ≈
2

∑

j=1

ψi(cj)f(xk + cj).

The corresponding function can be

function b = bk(f,x)

% Calculate a numerical approximation to the elemental load vector

% of the function f on an element [x(1),x(2)].

% using quadratic elements.

h = x(2)-x(1);

c1 = 1/2-sqrt (3)/6;

c2 = 1/2+ sqrt (3)/6;

b = h*[(c1 -0.5)*(c1 -1)*f(x(1)+h*c1) + (c2 -0.5)*(c2 -1)*f(x(1)+h*c2); ...

2*c1*(1-c1)*f(x(1)+h*c1) + 2*c2*(1-c2)*f(x(1)+h*c2);

c1*(c1 -0.5)*f(x(1)+h*c1)+c2*(c2 -0.5)*f(x(1)+h*c2)];

c) Assemble the prototype matrices Ãh and M̃h as well as the load vector b̃.

Solution: For points b)-e), see Figure 1.

d) Remove the rows and columns corresponding to the boundary conditions.

e) Solve (3), and plot the solution.
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f = @(x) sin(pi*x);

sigma = 1;

% The partition of [0 ,1].

x = [0 ,0.1 ,0.25 ,0.3 ,0.4 ,0.45 ,0.5 ,0.55 ,0.6 ,0.7 ,0.8 ,0.9 ,1];

Ak = [7/3, -8/3, 1/3; % Element stiffness matrix

-8/3, 16/3, -8/3;

1/3, -8/3, 7/3];

Mk = [2/15 , 1/15, -1/30; % Element mass matrix

1/15, 8/15, 1/15;

-1/30, 1/15, 2/15];

Nk = length(x)-1; % Number of elements.

N = 2*Nk+1; % Number of nodes (including the boundaries)

theta = @(k,alpha) 2*(k-1)+ alpha; % local -to -global mapping.

Ah = sparse(N,N); % Stiffness matrix

Mh = sparse(N,N); % Mass matrix resp.

bh = zeros(N,1); % Load vector

% Assemble process:

for k = 1:Nk

h = x(k+1)-x(k); % Size of the element

gi = theta(k,1): theta(k ,1)+2;

Ah(gi ,gi) = Ah(gi ,gi) + Ak/h;

Mh(gi ,gi) = Mh(gi ,gi) + Mk*h;

bh(gi) = bh(gi) + bk(f,[x(k),x(k+1)]);

end

% For the case u(0)=u(1)=0

% Remove contributions concerning the Dirichlet boundaries.

A = Ah(2:end -1,2:end -1);

M = Mh(2:end -1,2:end -1);

b = bh(2:end -1);

% Solve the system

u = (A+sigma*M)\b;

% Include the boundaries.

u = [0;u;0];

% For the plot: Create a x-vector with all the nodes

% including the midpoints of each element.

xi = x(1);

for k=1:Nk

xi = [xi;x(k)+(x(k+1)-x(k))/2; x(k+1)];

end

% Plot the numerical and the exact solution in the nodes.

u_exact = sin(pi*xi)/(1+ pi^2);

plot(xi ,u_exact ,’r’,xi ,u,’b’)

legend(’u_exact ’,’u_h’);

Figure 1: Code for solving the Helmholtz equation in 1D by a quadratic FEM
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