
Bake, shake or break - and other applications for the FEM
Programming project in TMA4220 - part 2

by Kjetil André Johannessen
TMA4220 - Numerical solution of partial differential equations using the finite element method

5: Do real-life experimentation using your FEM code

In the second part of the problem set you are going to make use of your finite element library which
you have now built. You are going to apply this to a real-life application. The first tasks introduce
three different partial differential equations you can choose from, but you are not limited to these.
In the final task, you are free to choose any PDE you want, but it will be up to you to find the
neccessary theory to complete the project on this. The three presented equations are

• ∂u
∂t = ∇ (α∇u) - the heat equation

• ∇σ(u) = −f - the linear elasticity equation

• ρ∂2u
∂t2

= ∇σ(u) - the free vibration equation

You are required to do one of the following 5 tasks.

5.1: Making a princess cake (bake)

In this task you will take a deeper look into how to make a princess cake. The general idea is to
bake the skirt in cake dough, turn this upside down, decorate the skirt and put a doll into the center
such that it looks like she is wearing the skirt. You will be asked to model the cake dough during
cooking and predict the temperature distribution in this.

Figure 1: The target princess cake

(a) The physical cake mold form (b) The computational finite element mesh

Figure 2: The geometry which you are going to solve the heat equation on

a) The heat equation

The heat equation reads

∂u

∂t
= ∇ (α∇u)

u(t, x, y, z)|∂Ω = uD (1)

u(t, x, y, z)|t=0 = u0(x, y, z)

where α is an positive constant defined by

α =
κ

cpρ

with κ∗∗ being the thermal conductivity, ρ∗∗ the mass density and c∗∗p the specific heat capacity of
the material.

We are going to semidiscretize the system by projecting the spatial variables to a finite element
subspace Vh. Multiply (1) by a test function v and integrate over the domain Ω to get∫∫∫

Ω

∂u

∂t
v dV = −

∫∫∫
Ω

α∇u∇v dV

Note that we have only semidiscretized the system, and as such our unknown u is given as a linear
combination of the spatial basis functions, and continuous in time, i.e.

uh(x, y, z, t) =
n∑
i=1

uih(t)ϕi(x, y, z).

The variational form of the problem then reads: Find uh ∈ V g
h such that∫∫∫

Ω

∂u
∂t v dV = −

∫∫∫
Ω

α∇u∇v dV, ∀v ∈ Vh

⇒
∑
i

∫∫∫
Ω

ϕiϕjdV
∂uih
∂t = −

∑
i

∫∫∫
Ω

α∇ϕi∇ϕjdV uih ∀j

which in turn can be written as the linear system

M
∂u

∂t
(t) = −Au(t) (2)

which is an ordinary differential equation (ODE) with the matrices defined as

A = [Aij] =

∫∫∫
Ω

α∇ϕi∇ϕj dV

M = [Mij] =

∫∫∫
Ω

ϕiϕj dV.

Construct the matrixA andM as defined above.

b) Time integration

The system (2) is an ODE, which should be familiar from previous courses. Very briefly an ODE
is an equation on the form

∂y

∂t
= f(t, y)

where y may be a vector. The simplest ODE solver available is Eulers method

yn+1 = yn + hf(tn, yn).

More sophisticated include the improved eulers methods

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn + hf(tn, yn)))

or the implicit trapezoid rule

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1))

and the famous Runge Kutta methods.

Choose an ODE scheme (based on your previous experience and expertize) and implement your
time integration. Why did you choose the solver you did?

c) Experimentation

The boundary conditions are the physical variables which we have control over. The initial condi-
tion u(t, x, y, z)|t=0 is the cake dough as it is prior to any cooking. A proper choice here would be
room temperature, say 20◦C.

During the cooking in the oven, you may apply different boundary conditions as you see fit. One
option would be non-homogeneous Dirichlet boundary conditions of, say 225◦C. This would cor-
respond to the oven temperature. Another option is to enforce a heat flux into your domain which
would be formulated as Neumann boundary conditions.

One of the key goals in this task is to see the effect that the center metallic rod has on the solution.
It’s purpose is to make sure that the cake is more or less evenly cooked at the end, so you don’t
have any raw dough in the middle of your domain after taking it out of the oven; see figure 3.

For a computational realization of the internal rod, you should apply different material properties
to all elements within this domain. In the geometry files which are available for downloading from
the course webpage, all elements in the rod have been tagged with 1001, while all dough elements
are tagged with 1000.

(**) Physical proprties of cake dough and aluminium

Sorry, but you’ll have to figure out this by yourself.

Figure 3: Raw cake dough in the middle. And yes, I actually made this cake.

5.2 Structural analysis (break)

We are in this problem going to consider the linear elasticity equation. The equations describe
deformation and motion in a continuum. While the entire theory of continuum mechanics is an
entire course by itself, it will here be sufficient to only study a small part of this: the linear elasticity.
This is governed by three main variables u, ε and σ (see table 1). We will herein describe all
equations and theory in terms of two spatial variables (x, y), but the extension into 3D space
should be straightforward.

u =

[
ux
uy

]
-

the displacement vector measures
how much each spatial point has moved
in (x, y)-direction

ε =

[
εxx εxy
εxy εyy

]
-

the strain tensor measures how
much each spatial point has deformed
or stretched

σ =

[
σxx σxy
σxy σyy

]
-

the stress tensor measures how
much forces per area are acting on a
particular spatial point

Table 1: Linear elasticity variables in two dimensions

Note that the subscript denotes vector component and not derivative, i.e. ux 6= ∂u
∂x .

These three variables can be expressed in terms of each other in the following way:

u = u(x) (3)

ε = ε(u) (4)

σ = σ(ε) (5)

The primary unknown u (the displacement) is the one we are going to find in our finite element
implementation. From (3) we will have two displacement values for each finite element ”node”,
one in each of the spatial directions.

The relation (4) is a purely geometric one. Consider an infinitesimal small square of size dx and
dy, and its deformed geometry as depicted in figure 4. The strain is defined as the stretching of
the element, i.e. εxx = length(ab)−length(AB)

length(AB) . The complete derivations of these quantities is
described well in the Wikipedia article on strain, and the result is the following relations

εxx(u) =
∂ux
∂x

εyy(u) =
∂uy
∂y

(6)

εxy(u) =
∂ux
∂y

+
∂uy
∂x

.

Note that these relations are the linearized quantities, which will only be true for small deforma-
tions.

http://en.wikipedia.org/wiki/Deformation_(mechanics)#Normal_strain

Figure 4: An infinitesimal small deformed rectangle

For the final relation, which connects the deformation to the forces acting upon it, we turn to
the material properties. Again, there is a rich literature on the subject, and different relations or
physical laws to describe different materials. In our case, we will study small deformations on
solid materials like metal, wood or concrete. It is observed that such materials behave elastically
when under stress of a certain limit, i.e. a deformed geometry will return to its initial state if all
external forces are removed. Experiment has shown that the Generalized Hooks Law is proving
remarkable accurate under such conditions. It states the following. Consider a body being dragged
to each side by some stress σxx as depicted in figure 5. Hooks law states that the forces on a
spring is linearly dependant on the amount of stretching multiplied by some stiffness constant, i.e.
σxx = Eεxx. The constant E is called Young’s modulus. Generalizing upon this law, we see that
materials typically contract in the y-direction, while being dragged in the x-direction. The ratio of
compression vs expansion is called Poisson’s ratio ν and is expressed as εyy = −νεxx. This gives
the following relations

εxx =
1

E
σxx

εyy = − ν
E
σxx

Due to symmetry conditions, we clearly see that when applying a stress σyy in addition to σxx we
get

εxx =
1

E
σxx −

ν

E
σyy

εyy =
1

E
σyy −

ν

E
σxx

Finally, it can be shown (but we will not) that the relation between the shear strain and shear stress

Figure 5: Deformed geometry under axial stresses

is εxy = 21+ν
E σxy. Collecting the components of ε andσ in a vector, gives us the compact notation

ε̄ = C−1σ̄ εxx
εyy
εxy

 =

 1
E − ν

E 0
− ν
E

1
E 0

0 0 21+ν
E

 σxx
σyy
σxy

or conversely

σ̄ = Cε̄ (7) σxx
σyy
σxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εxx
εyy
εxy

For a body at static equilibrium, we have the governing equations

∇σ(u) = −f (8)[
∂

∂x
,
∂

∂y

] [
σxx σxy
σxy σyy

]
= − [fx, fy]

and some appropriate boundary conditions

u = g, on ∂ΩD (9)

σ · n̂ = h, on ∂ΩN (10)

a) Weak form

Show that (8) can be written as the scalar equation

2∑
i=1

2∑
j=i

∫
Ω
εij(v)σij(u) dA =

2∑
i=1

∫
Ω
vifi dA+

2∑
i=1

2∑
j=1

∫
∂Ω
viσijn̂j dS

(where we have exchanged the subscripts (x, y) with (1, 2)) by multiplying with a test function

v =

[
v1(x, y)
v2(x, y)

]
and integrating over the domain Ω Moreover, show that this can be written in

compact vector form as∫
Ω
ε̄(v)TCε̄(u) dA =

∫
Ω
vTf dA+

∫
∂Ω
vTσn̂ dS

=

∫
Ω
vTf dA+

∫
∂Ω
vTh dS

b) Galerkin projection

As in 2b) let v be a test function in the space Vh of piecewise linear functions on some triangulation
T . Note that unlike before, we now have vector test functions. This means that for each node î, we
will have two test functions

ϕî,1(x) =

[
ϕî(x)

0

]
ϕî,2(x) =

[
0

ϕî(x)

]
Let these functions be numbered by a single running index i = 2̂i+d, where i is the node number
in the triangulation and d is the vector component of the function.

Show that by inserting v = ϕj and u =
∑

iϕiui into (11) you get the system of linear equations

Au = b

where

A = [Aij] =

∫
Ω
ε̄(ϕi)

TCε̄(ϕj), dA

b = [bi] =

∫
Ω
ϕTi f dA+

∫
∂Ω
ϕTi h dS

(Hint: ε̄(·) is a linear operator)

c) Test case

Show that

u =

[
(x2 − 1)(y2 − 1)
(x2 − 1)(y2 − 1)

]

is a solution to the problem

∇σ(u) = −f in Ω (11)

u = 0 on ∂Ω

where

fx =
E

1− ν2

(
−2y2 − x2 + νx2 − 2νxy − 2xy + 3− ν

)
fy =

E

1− ν2

(
−2x2 − y2 + νy2 − 2νxy − 2xy + 3− ν

)
and Ω = {(x, y) : max(|x|, |y|) ≤ 1} is the refereance square (−1, 1)2.

d) Implementation

Modify your Poisson solver to solve the problem (11). Verify that you are getting the correct
result by comparing with the exact solution. The mesh may be obtained through the Grid function
getPlate().

e) Extension into 3d

Modify your 3d Poisson solver to assemble the stiffness matrix from linear elasticity in three
dimensions.

f) Experimentation

Import a 3d mesh from Minecraft or create one using your choice of meshgenerator. Apply gravity
loads as the bodyforces acting on your domain, this will be the right hand side function f in (8).
In order to get a non-singular stiffness matrix you will need to pose some Dirichlet boundary con-
ditions. Typically you should introduce zero displacements (homogeneous Dirichlet conditions)
where your structure is attached to the ground. This would yield a stationary solution.

g) Stress analysis

Solving (8) with a finite element method gives you the primary unknown: the displacement u. If
you are interested in derived quantities such as the stresses, these can be calculated from (7). Note
that σ is in essence the derivative of u which means that since u is C0 across element boundaries,
then σ will be discontinuous. To get stresses at the nodal values, we propose to average the stresses
over all neighbouring elements.

Loop over all elements and evaluate (the constant) stresses on that element. For each node, assign
the stresses to be the average stress over all neighbouring elements. This method is called ”Stress
Recovery”.

Figure 6: Block-structured mesh from the computer game Minecraft

5.3 Vibration analysis (shake)

Do problem 5.2a) - 5.2d) and read the theory on linear elasticity.

Figure 7: Mass-spring-model

The forces acting on a point mass m by a spring is given by the well known Hooks law:

mẍ = −kx

This can be extended to multiple springs and multiple bodies as in figure 8

Figure 8: 2 degree-of-freedom mass spring model

The physical laws will now become a system of equations instead of the scalar one above. The
forces acting on m1 is the spring k1 dragging in negative direction and k2 dragging in the positive
direction.

m1ẍ1 = −k1x1 + k2(x2 − x1)

This is symmetric, and we have an analogue expression for m2. The system can be written in
matrix form as [

m1 0
0 m2

] ¨[
x1

x2

]
=

[
−k1 − k2 k2

k2 −k2 − k3

] [
x1

x2

]
M ẍ = Ax

When doing continuum mechanics, it is the exact same idea, but the actual equations differ some.
Instead of discrete equations, we have continuous functions in space and the governing equations
are

ρü = ∇σ(u)

semi-discretization yields the following system of equations

M ü = −Au (12)

with the usual stiffness and mass matrix

A = [Aij] =

∫∫∫
Ω

ε̄(ϕi)
TCε̄(ϕj) dV

M = [Mij] =

∫∫∫
Ω

ρϕTi ϕj dV.

e)

Build the 3d mass matrix as given above.

We are now going to search for solutions of the type:

u = ueωit (13)

which inserted into (12) yields
ω2Mu = Au (14)

f)

Equation (14) is called a generalized eigenvalue problem (the traditional being with M = I). Find
the 20 first eigenvalues ωi and eigenvectors ui corresponding to this problem.

g)

Let x0 be your initial geometric description (the nodal values). Plot an animation of the eigen-
modes by

x = x0 + αui sin(t)

You may want to scale the vibration amplitude by some visually pleasing scalar α, and choose
the time steps appropriately. Note that for visualization purposes, you will not use the eigenfre-
quency ωi since you are interested in viewing (say) 1-5 complete periods of the vibration, but for
engineering purposes this is a very important quantity.

h)

Recreate the experiment as presented in the youtube video from figure 10

In its simplest form, one should be able to construct this setup using a bluetooth speaker, your
smartphone and a sound-wave app. Note however that the frequencies will depend on the material
you choose. Does the thickness of the plate make any difference? Does the choice of material
influence the patterns? How well were you able to recreate both the patterns and the frequencies.

Figure 9: A vibrating plate with table salt on it

Figure 10: http://youtu.be/wvJAgrUBF4

http://youtu.be/wvJAgrUBF4w

5.4 The best answer

In this problem, you are tasked to give the most accurate finite element code you can muster. It is
going to be a technical problem and will focus on improving your finite element library. You are
going to compute a finite element solution to problems with known exact solutions u and the goal
is to get the error ‖u− uh‖ as small as possible. From the theory we know that ‖u− uh‖ ≈ Chp,
so there are two ways of improving the error

• decrease h

• increase p

Both strategies, will require major revisions to your existing library from task 1; either from im-
plementing new basis functions (p-refinement), or optimizing existing algorithms to handle large
number of unknowns (h-refinement).

a) Profile your code

profile is a Matlab command to analyse which parts of your code runs fast and which runs
slow. Type profile on before starting your program, and after it is finished type profile
off to stop timing your program and profile viewer to view the results.

What part of your code is the slowest?

b) Compute the error

To compute the error of your finite element solution, you will need to integrate this in some norm.
One usually measures the error of finite element problems in one of three norms,

|u− uh|2H1 =

∫
Ω
∇(u− uh) · ∇(u− uh)dΩ (15)

‖u− uh‖2L2 =

∫
Ω

(u− uh)2dΩ (16)

‖u− uh‖L∞ = max(u− uh). (17)

The H1 semi-norm is usually denoted as the energy norm, and satisfies a(u, u) = |u|2H1 . From the
Galerkin orthogonality, we know that the finite element solution is the best possible solution (in
our solution space) as measured in the energy norm. It is the most natural, and predictive way of
computing the error.

Compute your error in energy norm on the problem from task 3 as well as both the square and ball-
geometries from task 4 (all from part 1). To compute the continuous integral of the norms, you
will need to split it into a sum of integration over single elements and evaluate the error functions
here. You will find your assembly procedure from task 2a to be helpful.

c) Get convergence plots

Again, we will use the analytical solutions from part I. Compute your solution on a series of
meshes of different sizes. Plot the error you are getting vs the element size h in a log-log plot.
What do you see? Explain your findings.

d) Machine precision

Computers operate with a limited number of decimal digits. For your typical computing environ-
ment, this is of the order O(10−15). Can you create a 2D finite element solution which reaches
machine precision? Can you do the same on a 3D problem? How large system did you need, and
how long time did the computations take? tic (start) and toc (stop) is a much simpler timing
mechanism than profile and allow you to measure the time spent on computations.

e) The L-shape

Ω

ΓD

ΓN

ΓN

ΓN

ΓN

ΓD

(0,1)

(1,0)

(-1,-1)

(0,0)

Figure 11: L-shape domain

Let the domain Ω = [−1, 1]2/ [0, 1]2 be the L-shaped domain around the origin (see above). Solve
the poisson problem

∇2u = 0 in Ω

u = 0 on ΓD
∂u

∂n
= g on ΓN

With the known exact solution

u(r, θ) = r2/3 sin(
2θ + 2π

3
), θ ∈

[π
2
, 2π
]

(18)

Compute g from (18) and run your finite element program on this problem. How fine solution are
you able to obtain? How long did your simulation take?

5.5 Custom game

a) Equation

Choose any equation of the above, or perhaps your own (preferably linear) equation and discretize
this in a finite element framework. Add appropriate boundary conditions.

b) Geometry

Create a custom geometry using the Matlab function delauney, the free software gmsh or any
other method you would like.

c) Solve problem

Assemble all matrices, and solve all system of equations.

d) Conclusions

Plot the results in GLview, Paraview or Matlab. Experiment around with different boundary con-
ditions, geometry or material parameters to do an investigation of your choice.

http://geuz.org/gmsh/
http://ceetron.com/products/end-user-products/glview-inova
http://www.paraview.org/

