Examination paper for TMA4240 Statistics

Examination date : 26/11/2020

1 A

Introduction: Let X and Y be independent and normal distributed stochastic variables. Assume that X has mean 0.7 and standard deviation 0.5 , and that Y has mean -0.3 and standard deviation 0.5 .

Exercise: Fill in the correct values for the following probabilities. Enter the answer with two decimal places.

$$
\begin{aligned}
P(X \geq 1) & =0.274 \\
P(X \leq 1.5 \mid X \geq 1) & =0.8 \\
P(2 X-Y>1) & =0.734
\end{aligned}
$$

1B

Innledning: La X og Y være uavhengige og normalfordelte stokastiske variabler. Anta at X har forventningsverdi 0.6 og standardavvik 0.5 , og at Y har forventningsverdi -0.3 og standardavvik 0.5 .

Oppgave: Fyll inn riktige verdier for følgende tre sannsynligheter. Angi verdi med to siffer etter komma.

$$
\begin{aligned}
P(X \geq 0.8) & =0.34 \\
P(X \leq 1.5 \mid X \geq 0.8) & =0.90 \\
P(2 X-Y>1) & =0.67
\end{aligned}
$$

1C

Introduction: Let X and Y be independent and normal distributed stochastic variables. Assume that X has mean 0.7 and standard deviation 0.5 , and that Y has mean -0.3 and standard deviation 0.8 .

Exercise: Fill in the correct values for the following probabilities.Enter the answer with two decimal places.

$$
\begin{aligned}
P(Y \geq 1) & =0.052 \\
P(Y \leq 1.5 \mid Y \geq 1) & =0.76 \\
P(X-2 Y>1) & =0.57
\end{aligned}
$$

1D

Introduction: Let X and Y be independent and normal distributed stochastic variables. Assume that X has mean 0.7 and standard deviation 0.5 , and that Y has mean -0.3 and standard deviation 0.8 .

Exercise: Fill in the correct values for the following probabilities.Enter the answer with two decimal places.

$$
\begin{aligned}
P(Y \geq 0.9) & =0.06 \\
P(Y \leq 1.5 \mid Y \geq 0.9) & =0.81 \\
P(X-2 Y>0.8) & =0.61
\end{aligned}
$$

Innledning: Histogrammet ovenfor viser aldersfordelingen på personer som søker en bestemt stilling.
Oppgave: Hvilke av følgende utsagn er sanne?

- Den empiriske medianen er ca lik som gjennomsnitt
- Den empiriske medianen er større en gjennomsnitt
- Den empiriske medianen er mindre en gjennomsnitt
- Den empiriske medianen er mellom 24 og 25
- Gjennomsnitt er mellom 22 and 23

Innledning: Histogrammet ovenfor viser aldersfordelingen på personer som søker en bestemt stilling.
Oppgave: Hvilke av følgende utsagn er sanne?

- Den empiriske medianen er ca lik som gjennomsnitt
- Den empiriske medianen er større en gjennomsnitt
- Den empiriske medianen er mindre en gjennomsnitt
- Den empiriske medianen er mellom 24 og 25
- Gjennomsnitt er mellom 22 and 23

2C

Innledning: Histogrammet ovenfor viser aldersfordelingen på personer som søker en bestemt stilling.
Oppgave: Hvilke av følgende utsagn er sanne?

- Den empiriske medianen er ca lik som gjennomsnitt
- Den empiriske medianen er klart større en gjennomsnitt
- Den empiriske medianen er klart mindre en gjennomsnitt
- Den empiriske medianen er mellom 24 og 25
- Gjennomsnitt er mellom 22 and 23

3A

Innledning: La Y være Poisson fordelt med parameter $\lambda=10$
Oppgave: Finn

- $P(Y=7)=0.09$
- $P(Y \geq 8)=0.78$
- $P(Y<10 \mid Y \geq 8)=0.3$

3B

Innledning: La X være geometrisk fordelt med parameter $p=0.3$. Dvs at X har sannsynlighet fordeling

$$
P(X=x)=p(1-p)^{x-1}
$$

Oppgave: Finn

- $P(X=5)=0.07$
- $P(X \geq 3)=0.49$
- $P(X<5 \mid X \geq 3)=0.51$

3C

Innledning: La X være geometrisk fordelt med parameter $p=0.1$. Dvs at X har sannsynlighet fordeling

$$
P(X=x)=p(1-p)^{x-1}
$$

Oppgave: Finn

- $P(X=5)=0.07$
- $P(X \geq 3)=0.81$
- $P(X<5 \mid X \geq 3)=0.19$

3D

Innledning: La Y være Poisson fordelt med parameter $\lambda=5$

Oppgave: Finn

- $P(Y=1)=0.03$
- $P(Y \geq 2)=0.96$
- $P(Y<4 \mid Y \geq 2)=0.23$
\% \# Venndiagram

4A-D

The four version of the exercises all had the same possible choices. In some cases the left and right sides were inverted.

Introduction: Let A, B and C be three events in a sample space S
Exercise: Which of the following statements are always correct for three events? Hint:Draw a Venn diagram and use this to find which statements are correct.

- $(A \cap B) \cap C=A \cap(B \cap C)$ - Correct
- $(A \cap B) \cap C^{\prime}=\left(A \cap C^{\prime}\right) \cap\left(B \cap C^{\prime}\right)$ - Correct
- $A \backslash(B \cup C)=\left(A \cap B^{\prime}\right) \cap C^{\prime}$ - Correct
- $(A \cap B)^{\prime}=A^{\prime} \cap B^{\prime}$
- $(A \cap B)^{\prime} \cup C=(A \cap B) \cap C^{\prime}$
- $(A \cup B) \cap C=A \cup(B \cap C)$

5A

Innledning: La X være en stokastisk variabel men sannsynlighet tetthet

$$
f(x)= \begin{cases}1+x & \text { for } x \in(-1,0) \\ 1-x & \text { for } x \in(0,1)\end{cases}
$$

Oppgave:

- $P(X>0.3)=0.24$
- $P(X<-0.2)=0.32^{6}$
- $P(X>-0.2 \mid X<0.3)=0.58$

5B

Innledning: La X være en stokastisk variabel men sannsynlighet tetthet

$$
f(x)= \begin{cases}\frac{1}{2} \exp (x) & \text { for }-\log 2<x \leq 0 \\ \frac{1}{2}(x+1) & \text { for } 0<x<1\end{cases}
$$

Oppgave: Finn

- $P(X>0.5)=0.44$
- $P(X<0.2)=0.36$
- $P(X>0.2 \mid X<0.5)=0.36$

5C

Innledning: La X være en stokastisk variabel men sannsynlighet tetthet

$$
f(x)= \begin{cases}\frac{1}{2} \exp (x) & \text { for }-\log 2<x \leq 0 \\ \frac{1}{2}(x+1) & \text { for } 0<x<1\end{cases}
$$

Oppgave: Finn

- $P(X>0.3)=0.58$
- $P(X<-0.2)=0.16$
- $P(X>-0.2 \mid X<0.3)=0.62$

5D
Innledning: La X være en stokastisk variabel men sannsynlighet tetthet

$$
f(x)= \begin{cases}1+x & \text { for } x \in(-1,0) \\ 1-x & \text { for } x \in(0,1)\end{cases}
$$

Oppgave: Finn

- $P(X>0.4)=0.18$
- $P(X<0.2)=0.68$
- $P(X>0.2 \mid X<0.4)=0.17$

6A

X is a SV with distribution

$$
f(x)= \begin{cases}2 x \exp \left(-x^{2}\right) & \text { for } x>0 \\ 0 & \text { ellers }\end{cases}
$$

The median is

$$
m=\sqrt{\log (2)}=0.832
$$

6B

X is a SV with distribution

$$
f(x)= \begin{cases}\frac{1}{3}(4 x+1) & \text { for } x \in(0,1) \\ 0 & \text { ellers }\end{cases}
$$

Let m indicate the third quartile of X, then by definition:

$$
0.75=\int_{-\infty}^{m} f(x) d x=
$$

and in this case the solution is $m=\frac{-4+\sqrt{304}}{16}=0.84$

6C

X is a SV with distribution

$$
f(x)= \begin{cases}3 x^{2} \exp \left(-x^{3}\right) & \text { for } x>0 \\ 0 & \text { ellers }\end{cases}
$$

Let m indicate the first quartile of X, is by definition:

$$
0.25=\int_{-\infty}^{m} f(x) d x
$$

from this we get that

$$
m=(-\log (0.75))^{1 / 3}=0.660
$$

6D
X is a SV with distribution

$$
f(x)= \begin{cases}\frac{1}{3}(4 x+1) & \text { for } x \in(0,1) \\ 0 & \text { ellers }\end{cases}
$$

The median is $m=\frac{-2+\sqrt{52}}{8}=0.65$

7A

Introduction: Assume that we have an urn with 20 balls: 8 red, 10 yellow and the rest blue. Assume further that we randomly draw 11 balls without replacement.

Exercise: If we do not take into account the order the balls are drawn, in how many ways can we draw:

- exactly 5 red balls? Enter the answer as an integer (51744)
- either exactly 5 red or exactly 5 yellow balls (including the cases where it is both exactly 5 red and exactly 5 yellow)? Enter the answer as an integer. (76440)

7B

Introduction: Assume that we have an urn with 20 balls: 9 red, 6 yellow and the rest blue. Assume further that we randomly draw 13 balls without replacement.

Exercise: If we do not take into account the order the balls are drawn, in how many ways can we draw

- exactly 5 red balls? Give the answer as an integer. (20790)
- either exactly 5 red or exactly 5 yellow balls (including the cases where it is both exactly 5 red and exactly 5 yellow)? Enter the answer as an integer. (31248)

7 C

Introduction: Assume that we have an urn with 20 balls: 6 red, 6 yellow and the rest blue. Assume further that we randomly draw 15 balls without replacement.

Exercise: If we do not take into account the order the balls are drawn, in how many ways can we draw:

- exactly 5 red balls? Give the answer as an integer. (6006)
- either exactly 5 red or exactly 5 yellow balls (including the cases where it is both exactly 5 red and exactly 5 yellow)? Enter the answer as an integer. (9996)

7D

Introduction: Assume we have an urn with 20 balls: 5 red, 7 yellow and the rest blue. Assume further that we draw 12 balls without replacement.

Exercise: If we do not take into account the order the balls are drawn, in how many ways can we draw

- exactly 5 red balls? Give the answer as an integer.(6435)
- either exactly 5 red or exactly 5 yellow balls (including the cases with both exactly 5 red balls and exactly 5 yellow balls)? Enter the answer as an integer (41883)

8A

Introduction: Let X_{1} and X_{2} be two dependent random variables with $E\left(X_{1}\right)=0, E\left(X_{2}\right)=-1, \operatorname{Var}\left(X_{1}\right)=$ $2, \operatorname{Var}\left(X_{2}\right)=2$ and $\operatorname{Cov}\left(X_{1}, X_{2}\right)=1$. Assume further that we have a stochastic variable Y that is independent of X_{1} and X_{2} and with $E(Y)=3$ and $\operatorname{Var}(Y)=2$

Let the stochastic variables Z_{1} and Z_{2} be defined as

$$
Z_{1}=X_{2}+2 Y \quad \text { and } \quad Z_{2}=3 X_{1}+2 X_{2}-4 Y
$$

Exercise: Find the mean and the variance of Z_{1} and Z_{2}. Enter the answers as integers.

$$
\begin{array}{r}
\mathrm{E}\left[Z_{1}\right]=6 \\
\operatorname{Var}\left[Z_{1}\right]=10 \\
\mathrm{E}\left[Z_{2}\right]=-14 \\
\operatorname{Var}\left[Z_{2}\right]=70
\end{array}
$$

8B

Introduction: Let X_{1} and X_{2} be two dependent random variables with $E\left(X_{1}\right)=0, E\left(X_{2}\right)=-1, \operatorname{Var}\left(X_{1}\right)=$ $3, \operatorname{Var}\left(X_{2}\right)=2$ and $\operatorname{Cov}\left(X_{1}, X_{2}\right)=1$. Assume further that we have a stochastic variable Y that is independent of X_{1} and X_{2} and with $E(Y)=3$ and $\operatorname{Var}(Y)=2$

Let the stochastic variables Z_{1} and Z_{2} be defined as

$$
Z_{1}=3 X_{1}+Y \quad \text { and } \quad Z_{2}=X_{1}-4 X_{2}+2 Y
$$

Exercise: Find the mean and the variance of Z_{1} and Z_{2}. Enter the answers as integers.

$$
\begin{array}{r}
\mathrm{E}\left[Z_{1}\right]=3 \\
\operatorname{Var}\left[Z_{1}\right]=29 \\
\mathrm{E}\left[Z_{2}\right]=10 \\
\operatorname{Var}\left[Z_{2}\right]=35
\end{array}
$$

8C

Introduction: Let X_{1} and X_{2} be two dependent random variables with $E\left(X_{1}\right)=0, E\left(X_{2}\right)=-2, \operatorname{Var}\left(X_{1}\right)=$ $3, \operatorname{Var}\left(X_{2}\right)=2$ and $\operatorname{Cov}\left(X_{1}, X_{2}\right)=1$. Assume further that we have a stochastic variable Y that is independent of X_{1} and X_{2} and with $E(Y)=3$ and $\operatorname{Var}(Y)=2$
Let the stochastic variables Z_{1} and Z_{2} be defined as

$$
Z_{1}=X_{2}+2 Y \quad \text { and } \quad Z_{2}=8 X_{1}+2 X_{2}-Y
$$

Exercise: Find the mean and the variance of Z_{1} and Z_{2}. Enter the answers as integers.

$$
\begin{array}{r}
\mathrm{E}\left[Z_{1}\right]=4 \\
\operatorname{Var}\left[Z_{1}\right]=10 \\
\mathrm{E}\left[Z_{2}\right]=-7 \\
\operatorname{Var}\left[Z_{2}\right]=234
\end{array}
$$

9A

$$
f_{Y_{i}}\left(y_{i}\right)=\left\{\begin{array}{lc}
\frac{\lambda^{4} x_{i}^{4}}{6} y_{i}^{3} e^{-\lambda x_{i} y_{i}} & \text { for } y_{i} \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Let the stochastic variable Z be defined as

$$
Z=\sum_{i=1}^{n} x_{i} Y_{i}
$$

Exercise: Using the moment generating function, determine which of the following probability distributions is the correct distribution for Z.

- Chi-squared distribution with $4 n$ degrees of freedom.
- Gamma distribution with $\alpha=4 n$ and $\beta=\frac{1}{\lambda}$
- T-distribution with $4 n$ degrees of freedom.
- Gamma distribution with $\alpha=4 n$ and $\beta=\lambda$
- Chi-squared distribution with $8 n$ degrees of freedom.
- Chi-squared distribution with $2 n$ degrees of freedom.
- T-distribution with $2 n$ degrees of freedom.

9B

$$
f_{Y_{i}}\left(y_{i}\right)=\left\{\begin{array}{lc}
\frac{\theta^{3} x_{i}^{3}}{2} y_{i}^{2} e^{-\theta x_{i} y_{i}} & \text { for } y_{i} \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Let the stochastic variable Z be defined as

$$
Z=\sum_{i=1}^{n} x_{i} Y_{i}
$$

Exercise: Using the moment generating function, determine which of the following probability distributions is the correct distribution for Z.

- Chi-squared distribution with $3 n$ degrees of freedom.
- Gamma distribution with $\alpha=3 n$ and $\beta=\frac{1}{\theta}$
- T-distribution with $3 n$ degrees of freedom.
- Gamma distribution with $\alpha=3 n$ and $\beta=\theta$
- Chi-squared distribution with $6 n$ degrees of freedom.
- Chi-squared distribution with $3 n / 2$ degrees of freedom.
- T-distribution with $3 n / 2$ degrees of freedom.

9C

$$
f_{Y_{i}}\left(y_{i}\right)= \begin{cases}\lambda^{2} v_{i}^{2} y_{i} e^{-\lambda v_{i} y_{i}} & \text { for } y_{i} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Let the stochastic variable Z be defined as

$$
Z=\sum_{i=1}^{n} v_{i} Y_{i}
$$

Exercise: Using the moment generating function, determine which of the following probability distributions is the correct distribution for Z.

- Chi-squared distribution with $2 n$ degrees of freedom.
- Gamma distribution with $\alpha=2 n$ and $\beta=\frac{1}{\lambda}$
- T-distribution with $2 n$ degrees of freedom.
- Gamma distribution with $\alpha=2 n$ and $\beta=\lambda$
- Chi-squared distribution with $4 n$ degrees of freedom.
- Chi-squared distribution with $2 n / 2$ degrees of freedom.
- T-distribution with $2 n / 2$ degrees of freedom.

10A

From the pdf we can compute the cumulative distribution function for X which is $F_{X}(x)=x$. We have that:

$$
F_{Y}(y)=P(Y<y)=P(X(1-X)<y)=P\left(X-X^{2}-y<0\right)=P\left(X^{2}-X+y>0\right)
$$

We then need to find the roots of the equation:

$$
X^{2}-X+y=0
$$

which are

$$
X=\frac{1 \pm \sqrt{1-4 y}}{2}
$$

The inequality of interest is veryfied for

$$
X<\frac{1-\sqrt{1-4 y}}{2} \text { or } X>\frac{1+\sqrt{1-4 y}}{2}
$$

So, coming back to out cumulative distribution function we have that

$$
\begin{array}{r}
F_{Y}(y)=P(Y<y)= \\
P\left(X<\frac{1-\sqrt{1-4 y}}{2} \text { or } X>\frac{1+\sqrt{1-4 y}}{2}\right)= \\
P\left(X<\frac{1-\sqrt{1-4 y}}{2}+P\left(X>\frac{1+\sqrt{1-4 y}}{2}\right)=\right. \\
\frac{1-\sqrt{1-4 y}}{2}+1-\frac{1+\sqrt{1-4 y}}{2}= \\
1-\sqrt{1-4 y}
\end{array}
$$

The pdf is found by deriving $F_{Y}(y)$ wrt y

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{2}{\sqrt{1-4 y}}
$$

10B

From the pdf we can compute the cumulative distribution function for X which is $F_{X}(x)=\frac{1}{16} x^{2}$ We have that:

$$
F_{Y}(y)=P(Y<y)=P\left(X^{2}-4<y\right)=P\left(X^{2}-4-y<0\right)
$$

We then need to find the roots of the equation:

$$
X^{2}-4-y=0
$$

which are

$$
X=\sqrt{4+y}
$$

Moreover we have that $X>0$ so the inequality of interest is veryfied for

$$
X<\sqrt{4+y}
$$

So, coming back to out cumulative distribution function we have that

$$
F_{Y}(y)=P(Y<y)=P(X<\sqrt{4+y})=F_{X}(\sqrt{4+y})=\frac{4+y}{16}
$$

The pdf is found by deriving $F_{Y}(y)$ wrt y

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{1}{16} \text { for } x \in(-4,12)
$$

10C

From the pdf we can compute the cumulative distribution function for X which is $F_{X}(x)=\frac{1}{4} x$ We have that:

$$
F_{Y}(y)=P(Y<y)=P\left(X^{2}-4<y\right)=P\left(X^{2}-4-y<0\right)
$$

We then need to find the roots of the equation:

$$
X^{2}-4-y=0
$$

which are

$$
X= \pm \sqrt{4+y}
$$

Since we know also that $X>0$, the inequality of interest is verified for

$$
X<\sqrt{4+y}
$$

So, coming back to out cumulative distribution function we have that

$$
F_{Y}(y)=P(Y<y)=P(X<\sqrt{4+y})=F_{X}(\sqrt{4+y})=\frac{1}{4} \sqrt{4+y}
$$

The pdf is found by deriving $F_{Y}(y)$ wrt y

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{1}{8 \sqrt{4+y}}
$$

10D

From the pdf we can compute the cumulative distribution function for X which is $F_{X}(x)=x^{2}$. We have that:

$$
F_{Y}(y)=P(Y<y)=P(X(1-X)<y)=P\left(X-X^{2}-y<0\right)=P\left(X^{2}-X+y>0\right)
$$

We then need to find the roots of the equation:

$$
X^{2}-X+y=0
$$

which are

$$
X=\frac{1 \pm \sqrt{1-4 y}}{2}
$$

The inequality of interest is veryfied for

$$
X<\frac{1-\sqrt{1-4 y}}{2} \text { or } X>\frac{1+\sqrt{1-4 y}}{2}
$$

So, coming back to out cumulative distribution function we have that

$$
\begin{array}{r}
F_{Y}(y)=P(Y<y)=P\left(X<\frac{1-\sqrt{1-4 y}}{2} \text { or } X>\frac{1+\sqrt{1-4 y}}{2}\right)= \\
=P\left(X<\frac{1-\sqrt{1-4 y}}{2}\right)+P\left(X>\frac{1+\sqrt{1-4 y}}{2}\right)= \\
=\left(\frac{1-\sqrt{1-4 y}}{2}\right)^{2}+1-\left(\frac{1+\sqrt{1-4 y}}{2}\right)^{2}= \\
1-\sqrt{1-4 y}
\end{array}
$$

The pdf is found by deriving $F_{Y}(y)$ wrt y

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{2}{\sqrt{1-4 y}}
$$

11A

We assume that $X_{1}, X_{2}, \ldots, X_{n}$ are iid from the distribution

$$
f(x)= \begin{cases}\theta e^{\left(x-\theta e^{x}\right)} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

We derive the likelihood function as

$$
\begin{aligned}
L\left(\theta ; X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \\
& =\prod_{i=1}^{n} \theta e^{\left(x_{i}-\theta e_{i}^{x}\right)}
\end{aligned}
$$

We then take the log

$$
\begin{aligned}
l\left(\theta ; X_{1}, \ldots, X_{n}\right) & =\log L\left(\theta ; X_{1}, \ldots, X_{n}\right) \\
& =\sum_{i=1}^{n}\left[\log \theta+\left(x_{i}-\theta e_{i}^{x}\right)\right] \\
& =n \log \theta+\sum_{i=1}^{n} x_{i}-\theta \sum_{i=1}^{n} e^{x_{i}}
\end{aligned}
$$

To find the MLE we need to set the derivative of $l\left(\theta ; X_{1}, \ldots, X_{n}\right)$ wrt to θ to 0 :

$$
\begin{array}{r}
\frac{d l\left(\theta ; X_{1}, \ldots, X_{n}\right)}{d \theta}=0 \\
\frac{n}{\theta}-\sum_{i=1}^{n} e^{x_{i}}=0 \\
\hat{\theta}=\frac{n}{\sum_{i=1}^{n} e^{x_{i}}}
\end{array}
$$

11B

We assume that $X_{1}, X_{2}, \ldots, X_{n}$ are iid from the distribution

$$
f(x)= \begin{cases}\frac{\theta}{x} e^{\theta \log x} & \text { for } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We derive the likelihood function as

$$
\begin{aligned}
L\left(\theta ; X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \\
& =\prod_{i=1}^{n} \frac{\theta}{x_{i}} e^{\theta \log x_{i}}
\end{aligned}
$$

We then take the log

$$
\begin{aligned}
l\left(\theta ; X_{1}, \ldots, X_{n}\right) & =\log L\left(\theta ; X_{1}, \ldots, X_{n}\right) \\
& =n \log \theta-\sum \log x_{i}+\theta \sum \log x_{i}
\end{aligned}
$$

To find the MLE we need to set the derivative of $l\left(\theta ; X_{1}, \ldots, X_{n}\right)$ wrt to θ to 0 :

$$
\begin{array}{r}
\frac{d l\left(\theta ; X_{1}, \ldots, X_{n}\right)}{d \theta}=0 \\
\frac{n}{\theta}+\sum \log x_{i}=0 \\
\hat{\theta}=-\frac{n}{\sum_{i=1}^{n} \log x_{i}}
\end{array}
$$

11C

We assume that $X_{1}, X_{2}, \ldots, X_{n}$ are iid from the distribution

$$
f(x)= \begin{cases}\frac{4}{\theta} x^{3} e^{-x^{4} / \theta} & \text { for } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

We derive the likelihood function as

$$
\begin{aligned}
L\left(\theta ; X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \\
& =\prod_{i=1}^{n} \frac{4}{\theta} x_{i}^{3} e^{-x_{i}^{4} / \theta}
\end{aligned}
$$

We then take the log

$$
\begin{aligned}
l\left(\theta ; X_{1}, \ldots, X_{n}\right) & =\log L\left(\theta ; X_{1}, \ldots, X_{n}\right) \\
& =n \log 4-n \log \theta+3 \sum \log x_{i}-\frac{\sum x_{i}^{4}}{\theta}
\end{aligned}
$$

To find the MLE we need to set the derivative of $l\left(\theta ; X_{1}, \ldots, X_{n}\right)$ wrt to θ to 0 :

$$
\begin{array}{r}
\frac{d l\left(\theta ; X_{1}, \ldots, X_{n}\right)}{d \theta}=0 \\
-\frac{n}{\theta}+\frac{1}{\theta^{2}} \sum x_{i}^{4}=0 \\
\hat{\theta}=-\frac{\sum_{i=1}^{n} x_{i}^{4}}{n}
\end{array}
$$

11D

We assume that $X_{1}, X_{2}, \ldots, X_{n}$ are iid from the distribution

$$
f(x)= \begin{cases}\frac{3}{\theta x}(\log x)^{2} e^{(\log x)^{2} / \theta} & \text { for } 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

We derive the likelihood function as

$$
\begin{aligned}
L\left(\theta ; X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} f\left(x_{i} ; \theta\right) \\
& =\prod_{i=1}^{n} \frac{3}{\theta x_{i}}\left(\log x_{i}\right)^{2} e^{\left(\log x_{i}\right)^{2} / \theta}
\end{aligned}
$$

We then take the log

$$
\begin{aligned}
l\left(\theta ; X_{1}, \ldots, X_{n}\right) & =\log L\left(\theta ; X_{1}, \ldots, X_{n}\right) \\
& =n \log 3-n \log \theta-\sum \log x_{i}+2 \sum \log \left(\log x_{i}\right)+\frac{1}{\theta} \sum\left(\log x_{i}\right)^{3}
\end{aligned}
$$

To find the MLE we need to set the derivative of $l\left(\theta ; X_{1}, \ldots, X_{n}\right)$ wrt to θ to 0 :

$$
\begin{array}{r}
\frac{d l\left(\theta ; X_{1}, \ldots, X_{n}\right)}{d \theta}=0 \\
-\frac{n}{\theta}-\frac{1}{\theta^{2}} \sum\left(\log x_{i}\right)^{3}=0 \\
\hat{\theta}=-\frac{\sum\left(\log x_{i}\right)^{3}}{n}
\end{array}
$$

12A

Let $Y_{i}, i=1,2$ be two discrete stochastic variables with distribution

$$
P\left(Y_{i}=y_{i}\right)=\frac{\left(t_{i} \lambda\right)^{y_{i}}}{y_{i}!} \exp \left(-t_{i} \lambda\right) \text { for } y_{i}=0,1,2 \ldots
$$

where $t_{1}=2$ and $t_{2}=5$.
We re given two estimators

$$
\widehat{\lambda}=\frac{t_{1} Y_{1}+t_{2} Y_{2}}{t_{1}^{2}+t_{2}^{2}} \text { and } \tilde{\lambda}=\frac{Y_{1}+Y_{2}}{t_{1}+t_{2}}
$$

We need to find the mean and the variance.
We start with $\widehat{\lambda}$

$$
\begin{aligned}
E(\widehat{\lambda}) & =\frac{t_{1} E\left(Y_{1}\right)+t_{2} E\left(Y_{2}\right)}{t_{1}^{2}+t_{2}^{2}}=\frac{22 \lambda+55 \lambda}{4+25}=\lambda \\
\operatorname{Var}(\widehat{\lambda}) & =\frac{t_{1}^{2} \operatorname{Var}\left(Y_{1}\right)+t_{2}^{2} \operatorname{Var}\left(Y_{2}\right)}{\left(t_{1}^{2}+t_{2}^{2}\right)^{2}}=\frac{4(2 \lambda)+25(5 \lambda)}{29^{2}}=\frac{133}{29^{2}}=0.158 \lambda
\end{aligned}
$$

Then $\widetilde{\lambda}$:

$$
\begin{aligned}
E(\widetilde{\lambda}) & =\frac{E\left(Y_{1}\right)+E\left(Y_{2}\right)}{t_{1}+t_{2}}=\frac{2 \lambda+5 \lambda}{2+5}=\lambda \\
\operatorname{Var}(\widetilde{\lambda}) & =\frac{\operatorname{Var}\left(Y_{1}\right)+\operatorname{Var}\left(Y_{2}\right)}{\left(t_{1}+t_{2}\right)^{2}}=\frac{7 \lambda}{49}=0.142 \lambda
\end{aligned}
$$

Both $\widehat{\lambda}$ and $\widetilde{\lambda}$ are unbiased. $\widetilde{\lambda}$ has smaller variance and therefore it is to be preferred.

12B

Let X and Y be two discrete stochastic variables with distribution respectively:

$$
f_{X}(x ; \lambda)=\left\{\begin{array}{ll}
\frac{1}{\lambda^{2}} x \exp (-x / \lambda) & \text { for } x>0 \\
0 & \text { otherwise }
\end{array} f_{Y}(y ; \lambda)= \begin{cases}\frac{1}{4 \lambda^{2}} y \exp (-y / 2 \lambda) & \text { for } y>0 \\
0 & \text { otherwise }\end{cases}\right.
$$

We are given two estimators

$$
\widehat{\lambda}=\frac{X}{2}, \text { and } \tilde{\lambda}=\frac{1}{2}\left(\frac{X}{2}+\frac{Y}{4}\right)
$$

We need to find the mean and the variance.
We start with $\widehat{\lambda}$

$$
\begin{aligned}
E(\widehat{\lambda}) & =\frac{E(X)}{2}=\frac{2 \lambda}{2}=\lambda \\
\operatorname{Var}(\widehat{\lambda}) & =\frac{\operatorname{Var}(X)}{4}=\frac{1}{2} \lambda^{2}
\end{aligned}
$$

Then $\tilde{\lambda}$:

$$
\begin{aligned}
E(\tilde{\lambda}) & =\frac{1}{2}\left(\frac{E(X)}{2}+\frac{E(Y)}{4}\right)=\frac{1}{2}\left(\frac{2 \lambda}{2}+\frac{4 \lambda}{4}\right)=\lambda \\
\operatorname{Var}(\widetilde{\lambda}) & =\frac{1}{4}\left(\frac{\operatorname{Var}(X)}{4}+\frac{\operatorname{Var}(Y)}{16}\right)=\frac{1}{4}\left(\frac{2 \lambda^{2}}{4}+\frac{8 \lambda^{2}}{16}\right)=\frac{1}{4} \lambda^{2}
\end{aligned}
$$

Both $\hat{\lambda}$ and $\tilde{\lambda}$ are unbiased. $\tilde{\lambda}$ has smaller variance and therefore it is to be preferred.

13A

We have that $Y_{i} \sim N\left(\alpha x_{i}^{2}, \sigma^{2} x_{i}\right), i=1, \ldots, n$ and that the MLE is

$$
\hat{\lambda}=\frac{\sum x_{i} Y_{i}}{\sum x_{i}^{3}}
$$

We want to find a 95% confidence interval for α.
We have that

$$
\begin{array}{r}
E(\hat{\alpha})=\sum \frac{x_{i}}{x_{i}^{3}} E\left(Y_{i}\right)=\sum \frac{x_{i}}{x_{i}^{3}} \alpha x_{i}^{2}=\alpha \\
\operatorname{Var}(\hat{\alpha})=\left(\frac{1}{\sum x_{i}^{3}}\right)^{2} \sum x_{i}^{2} \operatorname{Var}\left(Y_{i}\right)=\sum\left(\frac{1}{\sum x_{i}^{3}}\right)^{2} \sum x_{i}^{2} \sigma^{2} x_{i}=\frac{\sigma^{2}}{\sum x_{i}^{3}}
\end{array}
$$

Moreover, $\hat{\alpha}$ is normally distributed since it is a linear combination of normally distributed RV. We have then

$$
Z=\frac{\hat{\alpha}-\alpha}{\sqrt{\frac{\sigma^{2}}{\sum x_{i}^{3}}}} \sim N(0,1)
$$

This we can use to set up a 95% confidence interval for α as

$$
\begin{array}{r}
P\left(-z_{0.025}<Z<z_{0.025}\right)=0.95 \\
P\left(-1.96<\frac{\hat{\alpha}-\alpha}{\sqrt{\frac{\sigma^{2}}{\sum x_{i}^{3}}}}<1.96\right)=0.95 \\
P\left(\hat{\alpha}-\frac{1.96 \sigma}{\sqrt{\sum x_{i}^{3}}}<\alpha<\hat{\alpha}+\frac{1.96 \sigma}{\sqrt{\sum x_{i}^{3}}}\right)=0.95
\end{array}
$$

13B

We have that $Y_{i} \sim N\left(\beta \log x_{i}, \sigma^{2} x_{i}^{2}\right), i=1, \ldots, n$ and that the MLE is

$$
\hat{\beta}=\frac{\sum Y_{i} \log x_{i} / x_{i}^{2}}{\sum\left(\log x_{i}\right)^{2} / x_{i}^{2}}
$$

We want to find a 95% confidence interval for β.
We have that

$$
\begin{aligned}
E(\hat{\beta}) & =\frac{\sum E\left(Y_{i}\right) \log x_{i} / x_{i}^{2}}{\sum\left(\log x_{i}\right)^{2} / x_{i}^{2}}=\frac{\sum \beta \log x_{i} \log x_{i} / x_{i}^{2}}{\sum\left(\log x_{i}\right)^{2} / x_{i}^{2}}=\beta \\
\operatorname{Var}(\hat{\beta}) & =\frac{\sigma^{2}}{\sum\left(\log x_{i}\right)^{2} / x_{i}^{2}}
\end{aligned}
$$

Moreover, $\hat{\beta}$ is normally distributed since it is a linear combination of normally distributed RV. We have then

$$
Z=\frac{\hat{\beta}-\beta}{\sqrt{\frac{\sigma^{2}}{\sum\left(\log x_{i}\right)^{2} / x_{i}^{2}}}} \sim N(0,1)
$$

This we can use to set up a 95% confidence interval for α as

$$
\begin{array}{r}
P\left(-z_{0.025}<Z<z_{0.025}\right)=0.95 \\
P\left(-1.96<\frac{\hat{\beta}-\beta}{\sqrt{\frac{\sigma^{2}}{\sum\left(\log x_{i}\right)^{2} / x_{i}^{2}}}}<1.96\right)=0.95 \\
P\left(\hat{\beta}-\frac{1.96 \sigma}{\sqrt{\sum\left(\log x_{i}\right)^{2} / x_{i}^{2}}}<\beta<\hat{\beta}+\frac{1.96 \sigma}{\sqrt{\sum\left(\log x_{i}\right)^{2} / x_{i}^{2}}}\right)=0.95
\end{array}
$$

13C

We have that $Y_{i} \sim N\left(\theta x_{i}\left(1-x_{i}\right), \sigma^{2} x_{i}\right), i=1, \ldots, n$ and that the MLE is

$$
\hat{\theta}=\frac{\sum Y_{i}\left(1-x_{i}\right)}{\sum x_{i}\left(1-x_{i}\right)^{2}}
$$

We want to find a 95% confidence interval for β.
We have that

$$
\begin{aligned}
E(\hat{\theta}) & =\frac{\sum E\left(Y_{i}\right)\left(1-x_{i}\right)}{\sum x_{i}\left(1-x_{i}\right)^{2}}=\frac{\sum \theta x_{i}\left(1-x_{i}\right)^{2}}{\sum x_{i}\left(1-x_{i}\right)}=\theta \\
\operatorname{Var}(\hat{\theta}) & =\frac{\sum \operatorname{Var}\left(Y_{i}\right)\left(1-x_{i}\right)^{2}}{\left(\sum x_{i}\left(1-x_{i}\right)^{2}\right)^{2}}=\frac{\sigma^{2}}{\sum x_{i}\left(1-x_{i}\right)^{2}}
\end{aligned}
$$

Moreover, $\hat{\theta}$ is normally distributed since it is a linear combination of normally distributed RV. We have then

$$
Z=\frac{\hat{\theta}-\theta}{\sqrt{\frac{\sigma^{2}}{\sum x_{i}\left(1-x_{i}\right)^{2}}}} \sim N(0,1)
$$

This we can use to set up a 95% confidence interval for α as

$$
\begin{array}{r}
P\left(-z_{0.025}<Z<z_{0.025}\right)=0.95 \\
P\left(-1.96<\frac{\hat{\theta}-\theta}{\sqrt{\sqrt[\sigma^{2}]{\sum x_{i}\left(1-x_{i}\right)^{2}}}}<1.96\right)=0.95 \\
P\left(\hat{\theta}-\frac{1.96 \sigma}{\sqrt{\sum x_{i}\left(1-x_{i}\right)^{2}}}<\theta<\hat{\theta}+\frac{1.96 \sigma}{\sqrt{\sum x_{i}\left(1-x_{i}\right)^{2}}}\right)=0.95
\end{array}
$$

14A

Introduction: A producer of washing machines claims that the average lifespan, μ, of his washing machines is 5 years. A group of clients suspects that this is not true and that, in fact, the lifespan is shorter than what the producer claims.

Exercise: Which null hypotheses, H_{0}, and alternativ hypotheses, H_{1}, should the client use in this situation?

- $H_{0} \neq 5$ og $H_{1}=5$
- $H_{0}=5$ og $H_{1} \neq 5$
- $H_{0}=5$ og $H_{1}<5$ - correct
- $H_{0}=5$ og $H_{1}>5$
- $H_{0}<5$ og $H_{1}=5$
- $H_{0}>5$ og $H_{1}=5$

14B

Introduction: We know that the average weight of foxes in Trøndelag has been $\mu=5 \mathrm{~kg}$. We suspect that, lately, the average weight has changed.

Exercise: Which null hypotheses,H_{0}, and alternativ hypotheses, H_{1}, should one use in this situation?

- $H_{0} \neq 5$ og $H_{1}=5$
- $H_{0}=5$ og $H_{1} \neq 5$ - correct
- $H_{0}=5$ og $H_{1}<5$
- $H_{0}=5$ og $H_{1}>5$
- $H_{0}<5$ og $H_{1}=5$
- $H_{0}>5$ og $H_{1}=5$

14C

Introduction: Ola grows tomatoes. In recent years, he has picked on average $\mu=5 \mathrm{~kg}$ of tomatoes per year from his garden. He has been on a cultivation course this year and he now claims that his production has increased.

Exercise: Which null hypotheses,H_{0}, and alternativ hypotheses, H_{1}, should one use in this situation?

- $H_{0} \neq 5$ og $H_{1}=5$
- $H_{0}=5$ og $H_{1} \neq 5$
- $H_{0}=5$ og $H_{1}<5$
- $H_{0}=5$ og $H_{1}>5$ - correct
- $H_{0}<5$ og $H_{1}=5$
- $H_{0}>5$ og $H_{1}=5$

15A

We have taht X_{1}, \ldots, X_{n} are iid with distribution

$$
f\left(x_{i} \mid \theta\right)= \begin{cases}\frac{1}{2 \theta^{3}} x_{i}^{2} e^{-\frac{x_{i}}{\theta}} & \text { for } x \geq 0 \\ 0 & \text { ellers }\end{cases}
$$

The MLE for θ is

$$
\hat{\theta}=\frac{1}{3 n} \sum X_{i}
$$

We want to test

$$
\begin{aligned}
& H_{0}: \theta=1 \\
& H_{1}: \theta<1
\end{aligned}
$$

using a significance level $\alpha=0.1$

Exercise A.

We have that

$$
\begin{aligned}
E(\hat{\theta}) & =\theta \\
\operatorname{Var}(\hat{\theta}) & =\frac{1}{9 n^{2}} \sum \operatorname{Var}\left(X_{i}\right)=\frac{3 n \theta^{2}}{9 n^{2}}=\frac{\theta^{2}}{3 n}
\end{aligned}
$$

Moreover, since n is large we can rely on the central limit theorem. This implies that

$$
Z=\frac{\hat{\theta}-\theta}{\frac{\theta}{\sqrt{3 n}}} \approx N(0,1)
$$

Under H_{0} we have that

$$
Z=\frac{\hat{\theta}-1}{\frac{1}{\sqrt{3 n}}} \approx N(0,1)
$$

So the decision rule is defined as

$$
\begin{aligned}
0.1 & =P\left(\text { Reject } H_{0} \mid H_{0}\right) \\
& =P\left(Z<z_{\alpha} \mid H_{0}\right) \\
& =P\left(\left.\frac{\hat{\theta}-1}{\frac{1}{\sqrt{3 n}}}<z_{\alpha} \right\rvert\, H_{0}\right) \\
& =P\left(\hat{\theta}<-\frac{-1.28}{\sqrt{3 n}}+1\right)
\end{aligned}
$$

Exercise B

We want the power of our test, when the true value of θ is 0.9 , to be at least 0.85

$$
\begin{aligned}
0.85 \leq P\left(\operatorname{Reject} H_{0} \mid H_{1}\right) & =P\left(\left.\hat{\theta}<\frac{-1.28}{\sqrt{3 n}}+1 \right\rvert\, \theta=0.9\right) \\
& =P\left(\frac{\hat{\theta}-0.9}{\left.\left.\frac{0.9}{\sqrt{3 n}}<\frac{\frac{-1.28}{\sqrt{3 n}}+1-0.9}{\frac{0.9}{\sqrt{3 n}}} \right\rvert\, \theta=0.9\right)}\right. \\
& =P\left(\left.Z<\frac{\frac{-1.28}{\sqrt{3 n}}+0.1}{\frac{0.9}{\sqrt{3 n}}} \right\rvert\, \theta=0.9\right)
\end{aligned}
$$

We need therefore

$$
\begin{aligned}
\frac{\frac{-1.28}{\sqrt{3 n}}+0.1}{\frac{0.9}{\sqrt{3 n}}} & \geq z_{0.15} \\
\frac{-1.28}{0.9}+0.1 \frac{\sqrt{3 n}}{0.9} & \geq 1.036 \\
3 n & \geq 22.12^{2} \\
n & \geq 163.09
\end{aligned}
$$

15B

We have taht X_{1}, \ldots, X_{n} are iid with distribution

$$
f\left(x_{i} ; \theta\right)=\frac{\theta^{x_{i}}}{x_{i}!} e^{-\theta} \text { for } x_{i}=0,1,2, \ldots,
$$

The MLE for θ is

$$
\widehat{\theta}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

We want to test

$$
\begin{aligned}
& H_{0}: \theta=1 \\
& H_{1}: \theta>1
\end{aligned}
$$

using a significance level $\alpha=0.05$

Exercise A.

We have that

$$
\begin{aligned}
E(\hat{\theta}) & =\theta \\
\operatorname{Var}(\hat{\theta}) & =\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)=\frac{\theta}{n}
\end{aligned}
$$

Moreover, since n is large we can rely on the central limit theorem. This implies that

$$
Z=\frac{\hat{\theta}-\theta}{\sqrt{\frac{\theta}{n}}} \approx N(0,1)
$$

Under H_{0} we have that

$$
Z=\frac{\hat{\theta}-1}{\sqrt{\frac{1}{n}}} \approx N(0,1)
$$

So the decision rule is defined as

$$
\begin{aligned}
0.05 & =P\left(\text { Reject } H_{0} \mid H_{0}\right) \\
& =P\left(Z>z_{\alpha} \mid H_{0}\right) \\
& =P\left(\left.\frac{\hat{\theta}-1}{\sqrt{\frac{1}{n}}}>z_{\alpha} \right\rvert\, H_{0}\right) \\
& =P\left(\hat{\theta}>\frac{1.645}{\sqrt{n}}+1\right)
\end{aligned}
$$

Exercise B

We want the power of our test, when the true value of θ is 1.05 , to be at least 0.8

$$
\begin{aligned}
0.8 \leq P\left(\operatorname{Reject} H_{0} \mid H_{1}\right) & =P\left(\left.\hat{\theta}>\frac{1.645}{\sqrt{n}}+1 \right\rvert\, \theta=1.05\right) \\
& =P\left(\left.\frac{\hat{\theta}-1.05}{\sqrt{\frac{1.05}{n}}}>\frac{\frac{1.645}{\sqrt{n}}+1-1.05}{\sqrt{\frac{1.05}{n}}} \right\rvert\, \theta=1.05\right) \\
& =P\left(\left.Z>\frac{\frac{1.645}{\sqrt{n}}-0.05}{\sqrt{\frac{1.05}{n}}} \right\rvert\, \theta=1.05\right)
\end{aligned}
$$

We need therefore

$$
\begin{gathered}
\frac{\frac{1.645}{\sqrt{n}}-0.05}{\sqrt{\frac{1.05}{n}}}<z_{0.8} \\
\frac{1.645}{\sqrt{1.05}}-0.05 \frac{\sqrt{n}}{\sqrt{1.05}}<-0.84 \\
n>2511.5
\end{gathered}
$$

15C

We have that X_{1}, \ldots, X_{n} are iid with distribution

$$
f\left(x_{i} \mid \theta\right)=f\left(x_{i} ; \theta\right)=\frac{1}{\theta}\left(1-\frac{1}{\theta}\right)^{x_{i}} \text { for } x_{i}=0,1,2, \ldots
$$

The MLE for θ is

$$
\widehat{\theta}=1+\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

We want to test

$$
\begin{aligned}
& H_{0}: \theta=2 \\
& H_{1}: \theta>2
\end{aligned}
$$

using a significance level $\alpha=0.05$

Exercise A.

We have that

$$
\begin{aligned}
E(\hat{\theta}) & =\theta \\
\operatorname{Var}(\hat{\theta}) & =\frac{\theta(\theta-1)}{n}
\end{aligned}
$$

Moreover, since n is large we can rely on the central limit theorem. This implies that

$$
Z=\frac{\hat{\theta}-\theta}{\sqrt{\frac{\theta(\theta-1)}{n}}} \approx N(0,1)
$$

Under H_{0} we have that

$$
Z=\frac{\hat{\theta}-2}{\sqrt{\frac{2}{n}}} \approx N(0,1)
$$

So the decision rule is defined as

$$
\begin{aligned}
0.05 & =P\left(\text { Reject } H_{0} \mid H_{0}\right) \\
& =P\left(Z>z_{\alpha} \mid H_{0}\right) \\
& =P\left(\left.\frac{\hat{\theta}-2}{\sqrt{\frac{2}{n}}}>z_{\alpha} \right\rvert\, H_{0}\right) \\
& =P\left(\hat{\theta}>1.645 \sqrt{\frac{2}{n}}+2\right)
\end{aligned}
$$

Exercise B

We want the power of our test, when the true value of θ is 0.9 , to be at least 2.05

$$
\begin{aligned}
0.9 \leq P\left(\text { Reject } H_{0} \mid H_{1}\right) & =P\left(\left.\hat{\theta}>1.645 \sqrt{\frac{2}{n}}+2 \right\rvert\, \theta=2.05\right) \\
& =P\left(\left.\frac{\hat{\theta}-2.05}{\sqrt{\frac{2.1525}{n}}}>\frac{1.645 \sqrt{\frac{2}{n}}+2-2.05}{\sqrt{\frac{2.1525}{n}}} \right\rvert\, \theta=2.05\right) \\
& =P\left(\left.Z>1.645 \sqrt{\frac{2}{2.1525}}-0.05 \sqrt{\frac{n}{2.1525}} \right\rvert\, \theta=2.05\right)
\end{aligned}
$$

We need therefore

$$
\begin{aligned}
1.645 \sqrt{\frac{2}{2.1525}}-0.05 \sqrt{\frac{n}{2.1525}} & <z_{0.9} \\
1.645 \sqrt{\frac{2}{2.1525}}-0.05 \sqrt{\frac{n}{2.1525}} & <-1.28 \\
n & >2.1525\left(\frac{1}{0.05}\left(1.645 \sqrt{\frac{2}{2.1525}}+1.28\right)\right)^{2} \\
n & >7070.52
\end{aligned}
$$

16A

The residual plot is

While the plot related to dataset 1 does not show any visible pattern, the residual plot for dataset 2 clearly shows that the variance is not constant wrt to x, something that is in contrast with the assumptions behind the linear model.

16B

The scatterplot is

The scatterplot related to dataset 1 shows a non linear relatioship between x and y. The simple linear model assumes, on the contrary, a linear relatioship between the two variables. The scatterplot for dataset 2 seems to respect such assumption.

16 C

The scatter plot is

Both scatterplot could agree with the assumption of a linear relationship between x and Y. The scatterplot related to dataset 1 shows a clear tendency for the variance of $Y_{i} \mid x_{i}$ to increase with the value of x_{i}, this is contrast with the assumption of the linear model that assumes constant variance for the error term. This asssumption seems to be respected by the dataset 2 .

16 D

The residual is

While the residuals for dataset 1 show no visible pattern, they are centered around 0 and appear to have constant variance, the residuals for dataset 2 show a clear pattern that points to a non-linear relatioship between the variables x and Y.

