Problem 1 A rare gene variant a predisposes for a given illness. In a population, the relative frequency of individuals that carries two copies of this gene variant (individuals of genotype aa) is 0.0001, the frequency of individuals that carries one copy (genotype Aa) is 0.0198, and the frequency of individuals that do not carry this rare gene variant (genotype AA) is 0.9801. Assume further that the probabilities for the illness to be expressed among persons with genotypes aa, Aa and AA are 0.6, 0.02 and 0.01 respectively.

a) Find the probability for the illness to be expressed in a randomly chosen individual in the population.

b) What are the probabilities that an individual is of genotype aa, Aa and AA respectively, given that the illness has been expressed?

Problem 2 A factory produces a special type of machine components. The time from a component starts to be used until it malfunctions for the first time is called the components
lifetime. Experience has shown that the lifetime T, measured in weeks, can be modeled as a continuous random variable with probability distribution

$$f_T(t) = 2\lambda te^{-\lambda t^2}, \quad t \geq 0,$$

$$= 0, \quad \text{otherwise},$$

(1)

where $\lambda > 0$ is an unknown parameter.

(a) Find the cumulative distribution function $F_T(t)$ for T, and calculate $P(20 < T \leq 30)$ when $\lambda = 1.5 \cdot 10^{-3}$.

(b) The parameter λ shall be estimated from the lifetimes T_1, \ldots, T_n for $n > 2$ randomly chosen components. T_1, \ldots, T_n are assumed to be independently, identically distributed with probability distribution $f_T(t)$. Show that the maximum likelihood estimator (MLE) for λ becomes

$$\Lambda^* = \frac{\sum_{i=1}^{n} T_i^2}{n}.$$

(2)

c) Let X be χ^2-distributed with $2n$ degrees of freedom ($n > 2$). Show that

$$\text{E}(X^{-1}) = \frac{1}{2(n - 1)} \quad \text{and} \quad \text{E}(X^{-2}) = \frac{1}{4(n - 1)(n - 2)}.$$

(3)

Show also that $Y = 2\lambda T^2$ is χ^2-distributed with 2 degrees of freedom (remember that $T \geq 0$). Then use this result together with equation (3) to check if Λ^* is unbiased. If necessary, correct the estimator so that it becomes unbiased. Find this estimator’s variance. (Tip: Some helpful results can be found in ‘Tabeller og formler i statistikk’.)

d) Derive a $100(1 - \alpha)$% confidence interval for λ. Find the numerical solution for the interval when $\alpha = 0.05$, $n = 5$ and the observed values are

$$23.63 \quad 35.97 \quad 18.65 \quad 18.18 \quad 11.59$$

e) One day an error is detected in the production process. The components are tested by choosing 5 components randomly from this day’s production, and the lifetimes for these components are found by accelerated lifetime-testing. These observations are used to test

$$H_0 : \lambda \leq \lambda_0 = 1.5 \cdot 10^{-3}$$

vs.

$$H_1 : \lambda > \lambda_0 = 1.5 \cdot 10^{-3}$$
Show that $2\lambda_0 \sum_{i=1}^{n} T_i^2$ can be used as a test statistic, and find the critical area for a test with significance level α. Conclude for $\alpha = 0.05$ when the observations are

- 12.06
- 18.02
- 19.86
- 16.60
- 9.36

The components are packed in boxes with 5 components in each box. The factory guarantees that all components in a box will have a lifetime of at least a weeks. The factory will get a complaint on a box if one or more of the 5 components in a box has lifetime less than a weeks.

f) If $\lambda = 1.5 \cdot 10^{-3}$, how large can a at most be for the probability of a complaint to be no more than 0.05? You can assume independent lifetimes.

g) Let a and λ be as in point f), and assume that 1000 boxes are sold in a given period. Let U be the number of boxes with complaints. Which assumptions must be accepted for U to be binomially distributed? Assume that these assumptions are fulfilled and find $P(U \leq 60)$ by the normal approximation.