Wednesday Week 14.1 April 3rd
Simple linear regression: Least squares and
maximum likelihood
Example: Runoff (problem 3a Spring 2019)
Y:= Bo + Bix; + Z; , i=1,..., 25
Y: Runoff (mm/year)
x: Precipitation (mm/year)
E; independent and identically distributed (idd) noise,
with
$$\Sigma \sim N(0, \sigma^2)$$

Quilt How can 'least squares' be used to find
estimators for Bo and Bi ?
Answer: Geometrically:
Minimize sum of squared
errors (SSE), i.e. the
sum of the shaded areas to
the left (as a function
Precip. of Bo, Bi).

$$\frac{\text{Mathematically:}}{SSE = \sum_{i=1}^{25} (y_i - (b_0 + b_i x_i))^2}$$

$$\frac{\partial SSE}{\partial b_0} = -2 \sum_{i=1}^{25} (y_i - (b_0 + b_i x_i))$$

$$\frac{\partial SSE}{\partial b_i} = -2 \sum_{i=1}^{25} (y_i - (b_0 + b_i x_i)) x_i$$

We can therefore minimize SSEs by solving
for b, b, such that:
$$\frac{\partial SSE}{\partial b_0} = \frac{\partial SSE}{\partial b_1} = 0.$$

As shown in the video lectures,

$$\hat{\beta}_{1} = b_{1} = \frac{\sum_{i=1}^{25} x_{i} y_{i}}{\sum_{i=1}^{2} x_{i}^{2}} = \frac{\sum_{i=1}^{25} (x_{i} - \overline{x}) y_{i}}{\sum_{i=1}^{25} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{25} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{25} (x_{i} - \overline{x})^{2}}$$

$$\hat{\beta}_{0} = b_{0} = \overline{Y} - \hat{\beta}_{1} \overline{x}.$$

Qu 2:] What assumptions are necessary to use simple linear regression in this example?

Ánswer:

Assumptions

- $y_{1} - y_{2} - x_{1} - x_{2} - x_$

Note:

- Not all of the above assumptions are always necessary. Throughout this block on simple linear regression, think about when these are used, and, perhaps more importantly, when they are not used.
- Are the assumptions different in least squares compared to maximum likelihood for simple linear regression? How/Which ones?

Example: H.	ot chocolate sal	les (problem 4b, Fall 2015)
Value of x;	Ski conditions bod good very good excellent	Y:: ups of hot chocolate sold x:: ski conditions i = 1,, 20: day index E:: error, E: $\frac{100}{N(0, \sigma^2)}$
$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ Rui Do the modeling assumptions look reasonable from the plot in the slides?		

Ans: No, not all of them. Var(E;) increases with Xi (or else E[Yi] depends on x; and also i itself). Yi seems to increase for very good and 'excellent' ski conditions as i increases.

$$\begin{aligned} & \boxed{Q_{v:i}} \quad (alculate \quad \widehat{\beta}_{o}, \quad \widehat{\beta}_{i}, \quad and \quad \widehat{\sigma}^{2}. \\ \hline \overrightarrow{A}_{ns;i}} \quad \widehat{\beta}_{i} = \frac{\sum_{i=1}^{20} (x_{i} - \overline{x}) y_{i}}{\sum_{i=1}^{20} (x_{i} - \overline{x})^{2}} = \frac{237, 15}{24, 95} \approx \boxed{9,51} \\ & \widehat{\beta}_{o} = \overline{\gamma} - \widehat{\beta}_{i} \ \overline{x} = 25.65 - \frac{237, 15}{24, 95} \cdot 2.45 \\ & \approx \boxed{2.36} \\ & \widehat{\sigma}^{2} = \frac{1}{20} \sum_{i=1}^{20} (y_{i} - (\widehat{\beta}_{o} + \widehat{\beta}_{i} x_{i}))^{2} \\ & = \frac{18}{20} \cdot \frac{1}{(8} \sum_{i=1}^{20} (y_{i} - (\widehat{\beta}_{o} + \widehat{\beta}_{i} x_{i}))^{2} \\ & = \frac{18}{20} \cdot \frac{1}{(8} \sum_{i=1}^{20} (y_{i} - (\widehat{\beta}_{o} + \widehat{\beta}_{i} x_{i}))^{2} \\ & = \frac{18}{20} \cdot \frac{1}{(8} \sum_{i=1}^{20} (y_{i} - (\widehat{\beta}_{o} + \widehat{\beta}_{i} x_{i}))^{2} \\ & = \frac{18}{20} \cdot \frac{1}{28, 73} \end{aligned}$$